in

Intralocus conflicts associated with a supergene

  • Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the ectodysplasin locus in threespine stickleback. Evolution 63, 2831–2837 (2009).

    PubMed 

    Google Scholar 

  • Johnston, S. E. et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502, 93–95 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Christie, M. R., McNickle, G. G., French, R. A. & Blouin, M. S. Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection. Proc. Natl Acad. Sci. 115, 4441–4446 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zajitschek, F. & Connallon, T. Antagonistic pleiotropy in species with separate sexes, and the maintenance of genetic variation in life-history traits and fitness. Evolution 72, 1306–1316 (2018).

    PubMed 

    Google Scholar 

  • Mérot, C., Llaurens, V., Normandeau, E., Bernatchez, L. & Wellenreuther, M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat. Commun. 11, 1–11 (2020).

  • Bonduriansky, R. & Chenoweth, S. F. Intralocus sexual conflict. Trends Ecol. Evol. 24, 280–288 (2009).

    PubMed 

    Google Scholar 

  • Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. 98, 1671–1675 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Connallon, T. & Clark, A. G. Balancing selection in species with separate sexes: Insights from fisher’s geometric model. Genetics 197, 991–1006 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mokkonen, M. et al. Negative frequency-dependent selection of sexually antagonistic alleles in Myodes glareolus. Science 334, 972–974 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Connallon, T. & Matthews, G. Cross‐sex genetic correlations for fitness and fitness components: Connecting theoretical predictions to empirical patterns. Evol. Lett. 3, 254–262 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbott, J., Rios-Cardenas, O. & Morris, M. R. Insights from intralocus tactical conflict: adaptive states, interactions with ecology and population divergence. Oikos 128, 1525–1536 (2019).

    Google Scholar 

  • Morris, M. R., Goedert, D., Abbott, J. K., Robinson, D. M. & Rios-Cardenas, O. Intralocus tactical conflict and the evolution of alternative reproductive tactics. Adv Study Behav. 45, 447–478 (2013).

  • Kim, K. W. et al. A sex-linked supergene controls sperm morphology and swimming speed in a songbird. Nat. Ecol. Evol. 1, 1168–1176 (2017).

    PubMed 

    Google Scholar 

  • Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, 288–294 (2014).

    Google Scholar 

  • Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity 113, 1–8 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobzhansky, T. Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35, 288–302 (1950).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).

    PubMed 

    Google Scholar 

  • Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Horton, B. M. et al. Estrogen receptor α polymorphism in a species with alternative behavioral phenotypes. Proc. Natl Acad. Sci. 111, 1–6 (2014).

    Google Scholar 

  • Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).

    PubMed 

    Google Scholar 

  • Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).

    PubMed 

    Google Scholar 

  • Knief, U. et al. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nat. Ecol. Evol. 1, 1177–1184 (2017).

    PubMed 

    Google Scholar 

  • Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).

  • Keller, L. & Ross, K. G. Selfish genes: A green beard in the red fire ant. Nature 394, 573–575 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Avril, A., Purcell, J., Béniguel, S. & Chapuisat, M. Maternal effect killing by a supergene controlling ant social organization. Proc. Natl Acad. Sci. 117, 17130–17134 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilmartin, P. M. & Li, J. Homing in on heterostyly. Heredity 105, 161–162 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Loveland, J. L., Lank, D. B. & Küpper, C. Gene expression modification by an autosomal inversion associated with three male mating morphs. Front. Genet. https://doi.org/10.3389/fgene.2021.641620 (2021).

  • van Rhijn, J. G. The ruff. (T. & A.D. Poyser, 1991).

  • Giraldo-Deck, L. M. et al. Development of intraspecific size variation in black coucals, white-browed coucals and ruffs from hatching to fledging. J. Avian Biol. 51, 1–14 (2020).

    Google Scholar 

  • Lank, D. B., Farrell, L. L., Burke, T., Piersma, T. & McRae, S. B. A dominant allele controls development into female mimic male and diminutive female ruffs. Biol. Lett. 9, 15–18 (2013).

    Google Scholar 

  • Loveland, J. L. et al. Functional differences in the hypothalamic-pituitary-gonadal axis are associated with alternative reproductive tactics based on an inversion polymorphism. Horm. Behav. 127, 104877 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Verkuil, Y. I. et al. The interplay between habitat availability and population differentiation: A case study on genetic and morphological structure in an inland wader (Charadriiformes). Biol. J. Linn. Soc. 106, 641–656 (2012).

    Google Scholar 

  • Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Llaurens, V., Whibley, A. & Joron, M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol. Ecol. 26, 2430–2448 (2017).

    PubMed 

    Google Scholar 

  • Christians, J. K. Avian egg size: Variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).

    PubMed 

    Google Scholar 

  • Pick, J. L. et al. Artificial selection reveals the energetic expense of producing larger eggs. Front. Zool. 13, 1–10 (2016).

    Google Scholar 

  • Jha, A. R. et al. Whole-genome resequencing of experimental populations reveals polygenic basis of egg-size variation in Drosophila melanogaster. Mol. Biol. Evol. 32, 2616–2632 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verhoeven, M. A. et al. Variation in egg size of black-tailed godwits. Ardea 107, 291–302 (2019).

    Google Scholar 

  • Birchard, G. F. & Deeming, D. C. Egg allometry: influences of phylogeny and the altricial-precocial continuum. in Nests, eggs, and incubation (eds. Deeming, D. C. & Reynolds, S. J.) 97–112 (Oxford University Press, 2015).

  • Amat, J. A., Fraga, R. M. & Arroyo, G. M. Intraclutch egg-size variation and offspring survival in the Kentish Plover Charadrius alexandrinus. Ibis (Lond. 1859). 143, 17–23 (2001).

    Google Scholar 

  • Rahn, H. & Paganelli, C. V. Relationship of avian egg weight to body weight. Auk 92, 750–765 (1975).

    Google Scholar 

  • Krist, M. Egg size and offspring quality: A meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).

    PubMed 

    Google Scholar 

  • Blomqvist, D., Johansson, O. C. & Go, F. Parental quality and egg size affect chick survival in a precocial bird, the lapwing Vanellus vanellus. Oecologia 110, 18–24 (1997).

    ADS 
    PubMed 

    Google Scholar 

  • Cabana, G., Frewin, A., Peters, R. H. & Randall, L. The effect of sexual size dimorphism on variations in reproductive effort of birds and mammals. Am. Nat. 120, 17–25 (1982).

    Google Scholar 

  • Weatherhead, P. J. & Teather, K. L. Sexual size dimorphism and egg-size allometry in birds. Evolution 48, 671–678 (1994).

    PubMed 

    Google Scholar 

  • Teather, K. L. & Weatherhead, P. J. Sex-specific energy requirements of great-tailed grackle (Quiscalus mexicanus). J. Anim. Ecol. 57, 659–668 (1988).

    Google Scholar 

  • Tschirren, B., Postma, E., Gustafsson, L., Groothuis, T. G. G. & Doligez, B. Natural selection acts in opposite ways on correlated hormonal mediators of prenatal maternal effects in a wild bird population. Ecol. Lett. 17, 1310–1315 (2014).

    PubMed 

    Google Scholar 

  • Hegyi, G. et al. Yolk androstenedione, but not testosterone, predicts offspring fate and reflects parental quality. Behav. Ecol. 22, 29–38 (2011).

    Google Scholar 

  • Berdan, E. L., Blanckaert, A., Butlin, R. K. & Bank, C. Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genet. e1009411 https://doi.org/10.1371/journal.pgen.1009411 (2021).

  • Jay, P. et al. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat. Genet. 53, 288–293 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Stolle, E. et al. Degenerative expansion of a young supergene. Mol. Biol. Evol. 36, 553–561 (2018).

    PubMed Central 

    Google Scholar 

  • Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stuglik, M. T., Babik, W., Prokop, Z. & Radwan, J. Alternative reproductive tactics and sex-biased gene expression: The study of the bulb mite transcriptome. Ecol. Evol. 4, 623–632 (2014).

    Google Scholar 

  • Gamble, M. M. & Calsbeek, R. G. Intralocus sexual conflict can maintain alternative reproductive tactics. bioRxiv Prepr. 6 (2021).

  • Mank, J. E. Population genetics of sexual conflict in the genomic era. Nat. Rev. Genet. 18, 721–730 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Jukema, J. & Piersma, T. Permanent female mimics in a lekking shorebird. Biol. Lett. 2, 161–164 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lank, D. B. & Smith, C. M. Conditional lekking in ruff (Philomachus pugnax). Behav. Ecol. Sociobiol. 20, 137–145 (1986).

    Google Scholar 

  • Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).

    CAS 
    PubMed 

    Google Scholar 

  • von Engelhardt, N. & Groothuis, T. G. G. Maternal Hormones in Avian Eggs. Hormones and Reproduction of Vertebrates – Volume 4. https://doi.org/10.1016/B978-0-12-374929-1.10004-6 (2011).

  • Schielzeth, H. & Bolund, E. Patterns of conspecific brood parasitism in zebra finches. Anim. Behav. 79, 1329–1337 (2010).

    Google Scholar 

  • Colwell, M. A. Egg-laying intervals in shorebirds. Wader Study Gr. Bull. 111, 50–59 (2006).

    Google Scholar 

  • Goymann, W. et al. Testosterone and corticosterone during the breeding cycle of equatorial and European stonechats (Saxicola torquata axillaris and S. t. rubicola). Horm. Behav. 50, 779–785 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Goymann, W., East, M. L. & Hofer, H. Androgens and the role of female ‘hyperaggressiveness’ in spotted hyenas (Crocuta crocuta). Horm. Behav. 39, 83–92 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Schwabl, H. Yolk is a source of maternal testosterone for developing birds. Neurobiology 90, 11446–11450 (1993).

    CAS 

    Google Scholar 

  • Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2006).

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2020).

  • Giraldo-Deck, L. M. et al. Accepted version of paper data and code of manuscript: Intralocus conflicts associated with a supergene. Nature Communications (2022). Edmond Repository https://doi.org/10.17617/3.71.

  • Therneau, T. M. & Grambsch, P. M. The Cox Model. in Modeling Survival Data: Extending the Cox Model (eds. Therneau, T. M. & Grambsch, P. M.) 39–77 (Springer US, 2000).


  • Source: Ecology - nature.com

    The ecological roles of bacterial chemotaxis

    Building communities, founding a startup with people in mind