in

Impact of different enzymes on biofilm formation and mussel settlement

  • Zobell, C. E. & Allen, E. C. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29, 239–251 (1935).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flemming, H. C. et al. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Shikuma, N. J. & Hadfield, M. G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26, 39–46 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Maki, J., Rittschof, D., Schmidt, A., Snyder, A. & Mitchell, R. Factors controlling attachment of bryozoan larvae: A comparison of bacterial films and unfilmed surfaces. Biol. Bull. 177, 295–302 (1989).

    Google Scholar 

  • Satuito, C. G., Natoyama, K., Yamazaki, M. & Fusetani, N. Inductin of attachment and metamorphosis of laboratory cultures mussel Mytilus edulis galloprovincialis larvae by microbial film. Fish. Sci. 61, 223–227 (1995).

    CAS 

    Google Scholar 

  • Bao, W., Yang, J., Satuito, C. G. & Kitamura, H. Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: Evidence for two chemical cues?. Mar. Biol. 152, 657–666 (2007).

    Google Scholar 

  • Liang, X. et al. Polyurethane, epoxy resin and polydimethylsiloxane altered biofilm formation and mussel settlement. Chemosphere 218, 599–608 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huggett, M. J., Williamson, J. E., De Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • Yang, J. et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29, 247–259 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Qian, P. Y., Thiyagarajan, V., Lau, S. C. K. & Cheung, S. C. K. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat. Microb. Ecol. 33, 225–237 (2003).

    Google Scholar 

  • Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C. & Combes, D. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24, 11–22 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Beigbeder, A. et al. On the effect of carbon nanotubes on the wettability and surface morphology of hydrosilylation-curing silicone coatings. Nanostruct. Polym. Nanocomp 5, 37–43 (2009).

    Google Scholar 

  • Lee, S. H., Pumprueg, S., Moudgil, B. & Sigmund, W. Inactivation of bacterial endospores by photocatalytic nanocomposites. Colloids Surf. B Biointerfaces 40, 93–98 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Alzieu, C. Tributyltin: Case study of a chronic contaminant in the coastal environment. Ocean Coast. Manag. 40, 23–36 (1998).

    Google Scholar 

  • Yang, J. L. et al. Chromosome-level genome assembly of the hard-shelled mussel Mytilus coruscus, a widely distributed species from the temperate areas of East Asia. GigaScience 10, giab024 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, X. et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis. Int. J. Mol. Sci. 21, 710 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Liang, X. et al. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement. Int. Biodeterior. Biodegrad. 165, 105330 (2021).

    CAS 

    Google Scholar 

  • Peng, L. H. et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. Biofouling 36, 753–765 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Chang, R. H. et al. Complete genome sequence of Shewanella marisflavi ECSMB14101, a red pigment synthesizing bacterium isolated from the East China Sea. Mar. Genom. 58, 100846 (2021).

    Google Scholar 

  • Sutherland, I. W. Polysaccharide lyases. FEMS Microbiol. Rev. 16, 323–347 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Kristensen, J. B. et al. Antifouling enzymes and the biochemistry of marine settlement. Biotechnol. Adv. 26, 471–481 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Pettitt, M., Henry, S., Callow, M., Callow, J. & Clare, A. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling 20, 299–311 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: Mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).

    CAS 

    Google Scholar 

  • Boyd, A. & Chakrabarty, A. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60, 2355–2359 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaplan, J. B., Ragunath, C., Velliyagounder, K., Fine, D. H. & Ramasubbu, N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 48, 2633–2636 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, J., Bradshaw, D., Fulford, M. & Marsh, P. Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl. Environ. Microbiol. 69, 3327–3332 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiater, A., Szczodrak, J. & Rogalski, J. Hydrolysis of mutan and prevention of its formation in streptococcal films by fungal α-d-glucanases. Process Biochem. 39, 1481–1489 (2004).

    CAS 

    Google Scholar 

  • Dobretsov, S., Xiong, H., Xu, Y., Levin, L. A. & Qian, P.-Y. Novel antifoulants: Inhibition of larval attachment by proteases. Mar. Biotechnol. 9, 388–397 (2007).

    CAS 

    Google Scholar 

  • Carl, C. et al. Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. Biofouling 28, 1077–1091 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Patel, P., Callow, M. E., Joint, I. & Callow, J. A. Specificity in the settlement–modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ. Microbiol. 5, 338–349 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Thostenson, E. T., Ren, Z. & Chou, T. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899–1912 (2001).

    CAS 

    Google Scholar 

  • Beigbeder, A. et al. Marine fouling release silicone/carbon nanotube nanocomposite coatings: On the importance of the nanotube dispersion state. J. Nanosci. Nanotechnol. 10, 2972–2978 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Frogley, M. D., Ravich, D. & Wagner, H. D. Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647–1654 (2003).

    CAS 

    Google Scholar 

  • G., A. Seawater Composition. Online edition. SBCC Marine Science. Santa Barbara City College. http://www.marinebio.net/marinescience/02ocean/swcomposition.htm. (2004).

  • Shipovskov, S., Ferapontova, E. E., Gazaryan, I. & Ruzgas, T. Recombinant horseradish peroxidase-and cytochrome c-based two-electrode system for detection of superoxide radicals. Bioelectrochemistry 63, 277–280 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Aehle, W. Enzymes in Industry: Production and Applications (Wiley, 2007).

    Google Scholar 

  • Walker, G. Larval settlement: Historical and future perspectives. Crustacean Issues 10, 69–86 (1995).

    Google Scholar 

  • Tomarelli, R., Charney, J. & Harding, M. L. The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. J. Lab. Clin. Med. 34, 428–433 (1949).

    CAS 
    PubMed 

    Google Scholar 

  • Somogyi, M. Modifications of two methods for the assay of amylase. Clin. Chem. 6, 23–35 (1960).

    CAS 
    PubMed 

    Google Scholar 

  • Sinegani, A. A. S. & Emtiazi, G. The relative effects of some elements on the DNS method in cellulase assay. J. Appl. Sci. Environ. Manag. 10, 93–96 (2006).

    Google Scholar 

  • Li, Y. et al. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433, 434–441 (2014).

    Google Scholar 

  • Yang, J. et al. Effects of biofilms on settlement of plantigrades of the mussel Mytilus coruscus. J. Fish. China 37, 904–909 (2013) ((In Chinese with English Abstract)).

    Google Scholar 

  • Hu, X. M. et al. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition. Biofouling 37, 911–921 (2021).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Setting carbon management in stone

    Q&A: Latifah Hamzah ’12 on creating sustainable solutions in Malaysia and beyond