in

Extinction, coextinction and colonization dynamics in plant–hummingbird networks under climate change

  • Schemske, D. W. in Foundations of Tropical Forest Biology (eds Chazdon, R. L. & Whitmore, T. C.) 163–173 (Univ. Chicago Press, 2002).

  • Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  • Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Google Scholar 

  • Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).

    PubMed 

    Google Scholar 

  • Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

    PubMed 

    Google Scholar 

  • Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B 365, 2019–2024 (2010).

    Google Scholar 

  • Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present and future of biotic interactions. Science 341, 499–504 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bascompte, J., García, M. B., Ortega, R., Rezende, E. L. & Pironon, S. Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Sci. Adv. 5, eaav2539 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717 (2007).

    PubMed 

    Google Scholar 

  • Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    PubMed 

    Google Scholar 

  • Dalsgaard, B. et al. Specialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocity. PLoS ONE 6, e25891 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dalsgaard, B. et al. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36, 1331–1340 (2013).

    Google Scholar 

  • Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).

    Google Scholar 

  • Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    PubMed 

    Google Scholar 

  • Dáttilo, W. et al. Unravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc. R. Soc. B 283, 20161564 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dalsgaard, B. et al. Trait evolution, resource specialization and vulnerability to plant extinctions among Antillean hummingbirds. Proc. R. Soc. B 285, 20172754 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    PubMed 

    Google Scholar 

  • Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl Acad. Sci. USA 98, 4534–4539 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahbek, C. & Graves, G. R. Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. Proc. R. Soc. Lond. B 267, 2259–2265 (2000).

    CAS 

    Google Scholar 

  • Dalsgaard, B. et al. The influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird–plant networks. Funct. Ecol. 35, 1120–1133 (2021).

    Google Scholar 

  • Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).

    Google Scholar 

  • Graves, G. R. & Rahbek, C. Source pool geometry and the assembly of continental avifaunas. Proc. Natl Acad. Sci. USA 102, 7871–7876 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2014).

  • Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).

  • Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).

    Google Scholar 

  • Martín González, A. M., Dalsgaard, B. & Olesen, J. M. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7, 36–43 (2010).

    Google Scholar 

  • Burgos, E. et al. Why nestedness in mutualistic networks? J. Theor. Biol. 249, 307–313 (2007).

    PubMed 

    Google Scholar 

  • Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).

    Google Scholar 

  • Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    PubMed 

    Google Scholar 

  • Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).

    Google Scholar 

  • Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).

    PubMed 

    Google Scholar 

  • Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).

    Google Scholar 

  • Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    CAS 

    Google Scholar 

  • Cracraft, J. Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithol. Monogr. 36, 49–84 (1985).

    Google Scholar 

  • Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C. & Palacio, R. D. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc. Natl Acad. Sci. USA 115, 7985–7990 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jønsson, K. A. et al. Tracking animal dispersal: from individual movement to community assembly and global range dynamics. Trends Ecol. Evol. 31, 204–214 (2016).

    PubMed 

    Google Scholar 

  • McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Proctor, M., Yeo, P. & Lack, A. The Natural History of Pollination (HarperCollins, 1996).

  • Simberloff, D. S. & Wilson, E. O. Experimental zoogeography of islands: the colonization of empty islands. Ecology 50, 278–296 (1969).

    Google Scholar 

  • Connor, E. F. & Simberloff, D. Species number and compositional similarity of the Galapagos flora and avifauna. Ecol. Monogr. 48, 219–248 (1978).

    Google Scholar 

  • Grant, P. R. & Abbott, I. Interspecific competition, island biogeography and null hypotheses. Evolution 34, 332–341 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).

    Google Scholar 

  • Almeida-Neto, M., Guimarães, P., Guimarães, P. R. Jr, Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Google Scholar 

  • Simmons, B. I. et al. Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networks. J. Anim. Ecol. 87, 995–1007 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Benadi, G., Blüthgen, N., Hovestadt, T. & Poethke, H.-J. Contrasting specialization–stability relationships in plant–animal mutualistic systems. Ecol. Model. 258, 65–73 (2013).

    Google Scholar 

  • Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonne, J. et al. Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes. Proc. R. Soc. B 287, 20192873 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Patefield, W. Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals. J. R. Stat. Soc. C 30, 91–97 (1981).

    Google Scholar 

  • Dalsgaard, B. et al. Opposed latitudinal patterns of network‐derived and dietary specialization in avian plant–frugivore interaction systems. Ecography 40, 1395–1401 (2017).

    Google Scholar 

  • Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).

  • Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Two-Minute Gridded Global Relief Data (ETOPO2) v. 2 (NOAA National Geophysical Data Center, 2006); https://doi.org/10.7289/V5J1012Q

  • Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).

    Google Scholar 

  • Currie, D. J., Francis, A. P. & Kerr, J. T. Some general propositions about the study of spatial patterns of species richness. Écoscience 6, 392–399 (1999).

    Google Scholar 

  • Hurlbert et al. The effect of energy and seasonality on avian species richness and community composition. Am. Nat. 161, 83–97 (2003).

    PubMed 

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateo, R. G., Felicísimo, Á. M. & Muñoz, J. Effects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneity. J. Veg. Sci. 21, 908–922 (2010).

    Google Scholar 

  • Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).

    PubMed 

    Google Scholar 

  • Vizentin-Bugoni, J., Debastiani, V. J., Bastazini, V. A. G., Maruyama, P. K. & Sperry, J. H. Including rewiring in the estimation of the robustness of mutualistic networks. Methods Ecol. Evol. 11, 106–116 (2020).

    Google Scholar 

  • Rahbek, C., Borregaard, M. K., Hermansen, B., Nogues-Bravo, D. & Fjeldså, J. Definition and Description of the Montane Regions of the World (Center for Macroecology, Evolution and Climate, 2019); https://macroecology.ku.dk/resources/mountain_regions/definition-and-description-of-the-montane-regions-of-the-world_kopi/

  • Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    An intergenerational approach to parasitoid fitness determined using clutch size

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry