Connor, E. F. & Taverner, M. P. The evolution and adaptive significance of the leaf-mining habit. Oikos 79, 6–25. https://doi.org/10.2307/3546085 (1997).
Google Scholar
Hespenheide, H. A. Bionomics of leaf-mining insects. Annu. Rev. Entomol. 36, 535–560. https://doi.org/10.1146/annurev.en.36.010191.002535 (1991).
Google Scholar
Kato, M. Structure, organization, and response of a species-rich parasitoid community to host leafminer population dynamics. Oecologia 97, 17–25 (1994).
Google Scholar
López, R., Carmona, D., Vincini, A. M., Monterubbianesi, G. & Caldiz, D. Population dynamics and damage caused by the leafminer Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), on seven potato processing varieties grown in temperate environment. Neotrop. Entomol. 39, 108–114. https://doi.org/10.1590/S1519-566X2010000100015 (2010).
Google Scholar
Lopez-Vaamonde, C., Godfray, H. C. J. & Cook, J. M. Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution 57, 1804–1821. https://doi.org/10.1111/j.0014-3820.2003.tb00588.x (2003).
Google Scholar
Lopez-Vaamonde, C. et al. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J. Evol. Biol. 19, 1314–1326. https://doi.org/10.1111/j.1420-9101.2005.01070.x (2006).
Google Scholar
Scheffer, S. J., Lewis, M. L., Hébert, J. B. & Jacobsen, F. Diversity and host plant-use in North American Phytomyza Holly Leafminers (Diptera: Agromyzidae): Colonization, divergence, and specificity in a host-associated radiation. Ann. Entomol. Soc. Am. 114, 59–69. https://doi.org/10.1093/aesa/saaa034 (2021).
Google Scholar
Tooker, J. F. & Giron, D. The evolution of endophagy in herbivorous insects. Front. Plant Sci. 11, 581816. https://doi.org/10.3389/fpls.2020.581816 (2020).
Google Scholar
Hawkins, B. A. Pattern and Process in Host-Parasitoid Interactions (Cambridge University Press, 1994).
Google Scholar
Novotny, V. & Basset, Y. Host specificity of insect herbivores in tropical forests. Proc. R. Soc. B Biol. Sci. 272, 1083–1090. https://doi.org/10.1098/rspb.2004.3023 (2005).
Google Scholar
Lewis, O. T. et al. Structure of a diverse tropical forest insect-parasitoid community. J. Anim. Ecol. 71, 855–873. https://doi.org/10.1046/j.1365-2656.2002.00651.x (2002).
Google Scholar
Hirao, T. & Murakami, M. Quantitative food webs of lepidopteran leafminers and their parasitoids in a Japanese deciduous forest. Ecol. Res. 23, 159–168. https://doi.org/10.1007/s11284-007-0351-6 (2008).
Google Scholar
Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977. https://doi.org/10.1126/science.1214915 (2012).
Google Scholar
Leppänen, S. A., Altenhofer, E., Liston, A. D. & Nyman, T. Phylogenetics and evolution of host-plant use in leaf-mining sawflies (Hymenoptera: Tenthredinidae: Heterarthrinae). Mol. Phylogenet. Evol. 64, 331–341. https://doi.org/10.1016/j.ympev.2012.04.005 (2012).
Google Scholar
Doorenweerd, C., Van Nieukerken, E. J. & Menken, S. B. J. A global phylogeny of leafmining Ectoedemia moths (Lepidoptera: Nepticulidae): Exploring host plant family shifts and allopatry as drivers of speciation. PLoS ONE 10, 1–20. https://doi.org/10.1371/journal.pone.0119586 (2015).
Google Scholar
Nakadai, R. & Kawakita, A. Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer). Ecol. Evol. 6, 4958–4970. https://doi.org/10.1002/ece3.2266 (2016).
Google Scholar
Opler, P. A. Fossil lepidopterous leaf mines demonstrate the age of some insect-plant relationships. Science 179, 1321–1323. https://doi.org/10.1126/science.179.4080.1321 (1973).
Google Scholar
Labandeira, C. C., Dilcher, D. L., Davis, D. R. & Wagner, D. L. Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proc. Natl. Acad. Sci. U. S. A. 91, 12278–12282. https://doi.org/10.1073/pnas.91.25.12278 (1994).
Google Scholar
Winkler, I. S., Labandeira, C. C., Wappler, T. & Wilf, P. Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: New taxa from the Paleogene of North America and Germany and their evolutionary implications. J. Paleontol. 84, 935–954. https://doi.org/10.1666/09-163.1 (2010).
Google Scholar
van Nieukerken, E. J., Doorenweerd, C., Hoare, R. J. B. & Davis, D. R. Revised classification and catalogue of global Nepticulidae and Opostegidae (Lepidoptera, Nepticuloidea). Zookeys 2016, 65–246. https://doi.org/10.3897/zookeys.628.9799 (2016).
Google Scholar
Maccracken, S. A., Sohn, J.-C., Miller, I. M. & Labandeira, C. C. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. J. Syst. Palaeontol. 19, 131–144. https://doi.org/10.1080/14772019.2021.1881177 (2021).
Google Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R. & Ellis, B. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313, 1112–1115. https://doi.org/10.1126/science.1129569 (2006)
Google Scholar
Donovan, M. P., Wilf, P., Labandeira, C. C., Johnson, K. R. & Peppe, D. J. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PLoS ONE 9, e103542. https://doi.org/10.1371/journal.pone.0103542 (2014).
Google Scholar
Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C. & Cúneo, N. R. Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat. Ecol. Evol. 1, 0012. https://doi.org/10.1038/s41559-016-0012 (2017).
Google Scholar
Donovan, M. P., Wilf, P., Iglesias, A., Cúneo, N. R. & Labandeira, C. C. Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. Commun. Biol. 3, 708. https://doi.org/10.1038/s42003-020-01428-9 (2020).
Google Scholar
Labandeira, C. C. The four phases of plant-arthropod associations in deep time. Geol. Acta 4, 409–438. https://doi.org/10.1344/105.000000344 (2006).
Google Scholar
Labandeira, C. C. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Syst. Phylogen. 64, 53–94 (2006).
Wakita, K., Nakagawa, T., Sakata, M., Tanaka, N. & Oyama, N. Phanerozoic accretionary history of Japan and the western Pacific margin. Geol. Mag. https://doi.org/10.1017/s0016756818000742 (2018).
Google Scholar
Katayama, M. Stratigraphical study on the Mine Series. J. Geol. Soc. Jpn. 46, 127–141. https://doi.org/10.5575/geosoc.46.127 (1939).
Google Scholar
Maeda, H. & Oyama, N. Stratigraphy and fossil assemblages of the Triassic Mine Group and Jurassic Toyora Group in western Yamaguchi Prefecture. J. Geol. Soc. Japan 125, 585–594. https://doi.org/10.5575/geosoc.2019.0020 (2019).
Google Scholar
Aizawa, J. Fossil insect-bearing strata of the Triassic Mine Group, Yamaguchi Prefecture. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. Ser. A 10, 91–98 (1991).
Oyama, N. & Maeda, H. Madygella humioi sp. nov. from the Upper Triassic Mine Group, Southwest Japan: The oldest record of a sawfly (Hymenoptera: Symphyta) in East Asia. Paleontol. Res. 24, 64–71 (2020).
Google Scholar
Fujiyama, I. Mesozoic insect fauna of East Asia part 1. Introduction and upper Triassic faunas. Bull. Natl. Sci. Mus. 16, 331–386 (1973).
Fujiyama, I. Late Triassic insects from Mine, Yamaguchi, Japan, Part 1. Odonata. Bull. Natl. Sci. Mus. Tokyo Ser. C 17, 49–56 (1991).
Ueda, K. A Triassic fossil of scorpion fly from Mine, Japan. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. Ser. Ser. A 10, 99–103 (1991).
Takahashi, F., Ishida, H., Nohara, M., Doi, E. & Taniguchi, S. Occurrence of insect fossils from the Late Triassic Mine Group. Bull. Mine City Mus. Yamaguchi Prefect. Jpn. 13, 1–27 (1997).
Google Scholar
Kametaka, M. Provenance of the Upper Triassic mine group Southwest Japan. J. Geol. Soc. Jpn. 105, 651–667 (1999).
Google Scholar
Takahashi, E. & Mikami, T. Triassic. In Geology of Yamaguchi Prefecture (ed. Yamaguchi Museum) 93–108 (Yamaguchi Museum, 1975).
Kiminami, K. Atsu Group and Mine Group. In Monograph on Geology of Japan 6, Chugoku Region (ed. Geological Society of Japan) 85–88 (Asakura Publishing Co., Ltd., 2009).
Naito, G. Plant Fossils from the Mine Group (Mine City Education Comittee, 2000).
Kimura, T. Geographical distribution of Palaeozoic and Mesozoic plants in East and Southeast Asia. Hist. Biogeogr. Plate Tecton. Evol. Jpn. East Asia 1982, 135–200 (1987).
Kimura, T., Naito, G. & Ohana, T. Baiera cf. furcata (Lindley and Hutton) Braun from the Carnic Momonoki Formation, Japan. Bull. Natl. Sci. Mus. 9, 91–114 (1983).
Katagiri, T. Pallaviciniites oishii (comb. Nov.), a thalloid liverwort from the Late Triassic of Japan. Bryologist 118, 245–251. https://doi.org/10.1639/0007-2745-118.3.245 (2015).
Google Scholar
Kustatscher, E. et al. Flora of the Late Triassic. In The Late Triassic World, Topics in Geobiology, Vol. 46 (ed. Tanner, L. H.) 545–622 (Springer, 2018). https://doi.org/10.1007/978-3-319-68009-5_13.
Oyama, N., Yukawa, H. & Maeda, H. Mesozoic insect fossils of Japan: Significance of the Upper Triassic insect fauna of the Mine Group, Yamaguchi Pref. Bull. Mine City Mus. Yamaguchi Prefect. Jpn. 33, 1–13 (2020).
Shcherbakov, D. E., Lukashevich, E. D. & Blagoderov, V. Triassic Diptera and initial radiation of the order. Int. J. Dipterol. Res. 6, 75–115 (1995).
Krzemiński, W. & Krzemińska, E. Triassic Diptera: Descriptions, revisions and phylogenetic relations. Acta Zool. Cracov. 46, 153–184 (2003).
Blagoderov, V., Grimaldi, D. A. & Fraser, N. C. How time flies for flies: Diverse Diptera from the Triassic of Virginia and early radiation of the order. Am. Mus. Novit. 3572, 1–39. https://doi.org/10.1206/0003-0082(2007)509[1:HTFFFD]2.0.CO;2 (2007).
Google Scholar
Lukashevich, E. D., Przhiboro, A. A., Marchal-Papier, F. & Grauvogel-Stamm, L. The oldest occurrence of immature Diptera (Insecta), Middle Triassic France. Ann. la Société Entomol. Fr. 46, 4–22. https://doi.org/10.1080/00379271.2010.10697636 (2010).
Google Scholar
Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl. Acad. Sci. 109, 14796–14801. https://doi.org/10.1073/pnas.1208464109 (2012).
Google Scholar
Lara, M. B. & Lukashevich, E. D. The first Triassic dipteran (Insecta) from South America, with review of Hennigmatidae. Zootaxa 3710, 81–92. https://doi.org/10.11646/zootaxa.3710.1.6 (2013).
Google Scholar
Kimura, T. & Ohana, T. Some fossil ferns from the Middle Carnic Momonoki Formation, Yamaguchi prefecture, Japan. Bull. Natl. Sci. Mus. Ser. C Geol. Paleontol. 6, 73–92 (1980).
Hering, E. M. Biology of the Leaf Miners https://doi.org/10.1007/978-94-015-7196-8. (Springer, 1951).
Google Scholar
Kirichenko, N. et al. Systematics of Phyllocnistis leaf-mining moths (Lepidoptera, Gracillariidae) feeding on dogwood (Cornus spp.) in Northeast Asia, with the description of three new species. Zookeys 2018, 79–118. https://doi.org/10.3897/zookeys.736.20739 (2018).
Google Scholar
Cerdeña, J. et al. Phyllocnistis furcata sp. nov.: A new species of leaf-miner associated with Baccharis (Asteraceae) from Southern Peru (Lepidoptera, Gracillariidae). Zookeys 2020, 121–145. https://doi.org/10.3897/zookeys.996.53958 (2020).
Google Scholar
Elb, P. M., Melo-de-Pinna, G. F. & de Menezes, N. L. Morphology and anatomy of leaf miners in two species of Commelinaceae (Commelina diffusa Burm. F. and Floscopa glabrata (Kunth) Hassk). Acta Bot. Brasilica 24, 283–287. https://doi.org/10.1590/S0102-33062010000100030 (2010).
Google Scholar
Vasco, A., Moran, R. C. & Ambrose, B. A. The evolution, morphology, and development of fern leaves. Front. Plant Sci. 4, 1–16. https://doi.org/10.3389/fpls.2013.00345 (2013).
Google Scholar
Eiseman, C. Leafminers of North America. (Charley Eiseman, 2019).
Yang, J., Wang, X., Duffy, K. & Dai, X. A preliminary world checklist of fern-mining insects. Biodivers. Data J. 9, e62839. https://doi.org/10.3897/BDJ.9.e62839 (2021).
Google Scholar
Ding, Q., Labandeira, C. C. & Ren, D. Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Syst. Phylogen. 72, 281–308 (2014).
Boucher, S. Revision of the Canadian species of Amauromyza Hendel (Diptera: Agromyzidae). Can. Entomol. 144, 733–757. https://doi.org/10.4039/tce.2012.80 (2012).
Google Scholar
Scheirs, J., Vandevyvere, I. & De Bruyn, L. Influence of monocotyl leaf anatomy on the feeding pattern of a grass-mining agromyzid (Diptera). Ann. Entomol. Soc. Am. 90, 646–654 (1997).
Google Scholar
Boucher, S. Leaf-miner flies (Diptera: Agromyzidae). In Encyclopedia of Entomology (ed. Capinera J. L.) 2163–2169 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6359-6.
Eiseman, C. S. New rearing records for muscoid leafminers (Diptera: Anthomyiidae, Scathophagidae) in the United States. Proc. Entomol. Soc. Wash. 120, 25–50. https://doi.org/10.4289/0013-8797.120.1.25 (2018).
Google Scholar
Meikle, A. A. The insects associated with bracken. Agric. Prog. 14, 58–61 (1937).
Lawton, J. H. The structure of the arthropod community on bracken. Bot. J. Linn. Soc. 73, 187–216. https://doi.org/10.1111/j.1095-8339.1976.tb02022.x (1976).
Google Scholar
Lawton, J. H., MacGarvin, M. & Heads, P. A. Effects of altitude on the abundance and species richness of insect herbivores on bracken. J. Anim. Ecol. 56, 147–160. https://doi.org/10.2307/4805 (1987).
Google Scholar
Cooper-Driver, Gi. A. Insect-fern associations. Entomol. Exp. Appl. 24, 310–316. https://doi.org/10.1111/j.1570-7458.1978.tb02787.x (1978).
Google Scholar
Eiseman, C. S. Further Nearctic rearing records for phytophagous muscoid flies (Diptera: Anthomyiidae, Scathophagidae). Proc. Entomol. Soc. Washingt. 122, 595–603. https://doi.org/10.4289/0013-8797.122.3.595 (2020).
Google Scholar
Santos, M. G. & Maia, V. C. A synopsis of fern galls in Brazil. Biota Neotrop. 18, e20180513. https://doi.org/10.1590/1676-0611-BN-2018-0513 (2018).
Google Scholar
Peters, R. S. et al. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013–1018. https://doi.org/10.1016/j.cub.2017.01.027 (2017).
Google Scholar
Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999. https://doi.org/10.1093/sysbio/sys058 (2012).
Google Scholar
Needham, J. G., Frost, S. W. & Tothill, B. H. Leaf-Mining Insects (Waverly Press, 1928).
Smith, D. R., Eiseman, C. S., Charney, N. D. & Record, S. A new Nearctic Scolioneura (Hymenoptera, Tenthredinidae) mining leaves of Vaccinium (Ericaceae). J. Hymenopt. Res. 43, 1–8. https://doi.org/10.3897/JHR.43.4546 (2015).
Google Scholar
Zheng, D. et al. Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Sci. Adv. 4, eaat1380. https://doi.org/10.1126/sciadv.aat1380 (2018).
Google Scholar
Zhang, S. Q. et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 9, 1–11. https://doi.org/10.1038/s41467-017-02644-4 (2018).
Google Scholar
McKenna, D. D. et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. 116, 24729–24737. https://doi.org/10.1073/pnas.1909655116 (2019).
Google Scholar
Gimmel, M. L. & Ferro, M. L. General overview of saproxylic Coleoptera. In Saproxylic Insects, Zoological Monographs, Vol. 1 (ed. Ulyshen, M. D.) 51–128 (Springer, 2018). https://doi.org/10.1007/978-3-319-75937-1_2.
Labandeira, C. C., Anderson, J. M. & Anderson, H. M. Expansion of arthropod herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 site and developmental biology of a gall. In The Late Triassic World, Topics in Geobiology Vol. 46 (ed. Tanner, L. H.) 623–719 (Springer International Publishing AG, 2018).
Google Scholar
Fiebrig, K. Eine Schaum bildende Käferlarve Pachyschelus spec. (Bupr. Sap.) Die Ausscheidung von Kautschuk aus der Nahrung und dessen Verwertung zu Schutzzwecken (auch bei Rhynchoten). Z. f. Wiss. Insektenbiol. 4, 333–339 (1908).
Bruch, C. Metamórfosis de Pachyschelus undularius (Burm.). Physis 3, 30–36 (1917).
Hering, E. M. Neotropische Buprestiden-Minen. Arb. Physiol. Angew. Entomol. 9, 241–249 (1942).
Kogan, M. Contribuição ao conhecimento da sistemática e biologia de buprestídeos minadores do gênero Pachyschelus Solier, 1833: (Coleoptera, Buprestidae). Mem. Inst. Oswaldo Cruz 61, 429–457 (1963).
Google Scholar
Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl. Acad. Sci. 116, 22657–22663. https://doi.org/10.1073/pnas.1907847116 (2019).
Google Scholar
Van Eldijk, T. J. B. et al. A Triassic-Jurassic window into the evolution of lepidoptera. Sci. Adv. 4, e1701568. https://doi.org/10.1126/sciadv.1701568 (2018).
Google Scholar
Sohn, J. C., Labandeira, C. C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa. https://doi.org/10.11646/zootaxa.3286.1.1 (2012).
Doorenweerd, C., Van Nieukerken, E. J., Sohn, J. C. & Labandeira, C. C. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963, 295–334. https://doi.org/10.11646/zootaxa.3963.3.2 (2015).
Google Scholar
Kawahara, A. Y. et al. A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution. Syst. Entomol. 42, 60–81. https://doi.org/10.1111/syen.12210 (2017).
Google Scholar
Mazumdar, J. Phytoliths of pteridophytes. S. Afr. J. Bot. 77, 10–19. https://doi.org/10.1016/j.sajb.2010.07.020 (2011).
Google Scholar
Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E. & Fischer, W. W. Four hundred million years of silica biomineralization in land plants. Proc. Natl. Acad. Sci. U. S. A. 112, 5449–5454 https://doi.org/10.1073/pnas.1500289112 (2015).
Google Scholar
Hunt, J. W., Dean, A. P., Webster, R. E., Johnson, G. N. & Ennos, A. R. A novel mechanism by which silica defends grasses against herbivory. Ann. Bot. 102, 653–656. https://doi.org/10.1093/aob/mcn130 (2008).
Google Scholar
Reynolds, O. L., Keeping, M. G. & Meyer, J. H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 155, 171–186. https://doi.org/10.1111/j.1744-7348.2009.00348.x (2009).
Google Scholar
Edwards, N. P. et al. Leaf metallome preserved over 50 million years. Metallomics 6, 774–782. https://doi.org/10.1039/C3MT00242J (2014).
Google Scholar
Müller, A. H. Über Hyponome fossiler und rezenter Insekten, erster Beitrag. Freib. Forschungsh. C 366, 7–27 (1982).
Beck, A. L. & Labandeira, C. C. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 142, 139–173. https://doi.org/10.1016/S0031-0182(98)00060-1 (1998).
Google Scholar
Jarzembowski, E. A. The oldest plant-insect interaction in Croatia: Carboniferous evidence. Geol. Croat. 65(3), 387–392. https://doi.org/10.4154/GC.2012.28 (2002).
Google Scholar
Donovan, M. P. & Lucas, S. G. Insect herbivory on the Late Pennsylvanian Kinney Brick Quarry Flora, New Mexico, USA. Kinney Brick Quarry Lagerstätte. N. M. Mus. Nat. Hist. Sci. Bull. 84, 193–207 (2021).
Potonié, R. Ueber das Rothliegende des Thüringer Waldes. Theil II: Die Flora des Rothliegenden von Thüringen. Abh. Preuss. Geol. Landesanst. 9, 1–298 (1893).
Potonié, R. Mitteilungen über mazerierte kohlige Pflanzenfossilien. Z. Bot. 13, 79–88 (1921).
Adami-Rodrigues, K. A., Iannuzzi, R. & Pinto, I. D. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Foss. Strat. 51, 106–126 (2004).
Krassilov, V. A. & Karasev, E. First evidence of plant–arthropod interaction at the Permian–Triassic boundary in the Volga Basin European Russia. Alavesia 2, 247–252 (2008).
Labandeira, C. C., Wilf, P., Johnson, K. & Marsh, F. Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithson. Institution, Washington, DC 25 (2007).
Scott, A. C., Anderson, J. M. & Anderson, H. M. Evidence of plant-insect interactions in the Upper Triassic Molteno formation of South Africa. J. Geol. Soc. London. 161, 401–410. https://doi.org/10.1144/0016-764903-118 (2004).
Google Scholar
Tillyard, R. J. Mesozoic Insects of Queensland No. 9. Orthoptera, and Additions to the Protorthoptera, Odonata, Hemiptera, and Planipennia. Proc. Linn. Soc. N. S. W. 47, 447–470 (1922).
Rozefelds, A. C. & Sobbe, I. Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of Southeastern Queensland Australia. Alcheringa 11, 51–57 (1987).
Google Scholar
Wappler, T., Kustatscher, E. & Dellantonio, E. Plant-insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)-Initial pattern and response to abiotic environmental pertubations. PeerJ 2015, e921. https://doi.org/10.7717/peerj.921 (2015).
Google Scholar
Meller, B., Ponomarenko, A. G., Vasilenko, D. V., Fischer, T. C. & Aschauer, B. First beetle elytra, abdomen (Coleoptera) and a mine trace from Lunz (Carnian, Late Triassic, Lunz-am-See, Austria) and their taphonomical and evolutionary aspects. Palaeontology 54, 97–110. https://doi.org/10.1111/j.1475-4983.2010.01009.x (2011).
Google Scholar
Vassilenko, D. V. Traces of plant-arthropod interactions from Madygen (Triassic, Kyrgyzstan): Preliminary data. Sovremennaya paleontologia: klassicheskie i noveishie metody 9–16 (2009).
Zherikhin, V. V. Insect Trace Fossils. In History of Insects (ed. Rasnitsyn A. P., Quicke, D. L.) 303–324 (Kluwer Academic Publishers, 2010).
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Google Scholar
Source: Ecology - nature.com