in

Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions

  • Morton JT, Sanders J, Quinn RA, McDonald D, Gonzalez A, Vázquez-Baesa Y, et al. Balance trees reveal microbial niche differentiation. MSystems. 2017;2:e00162–16.

  • Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salles JF, Poly F, Schmid B, Le Roux X. Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology. 2009;90:3324–32.

    PubMed 

    Google Scholar 

  • Ge X, Thorgersen MP, Poole FL, Deutschbauer AM, Chandonia J-M, Novichov PS, et al. Characterization of a metal-resistant bacillus strain with a high molybdate affinity ModA from contaminated sediments at the Oak Ridge Reservation. Front Microbiol. 2020;11:2543.

    Google Scholar 

  • Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.

    CAS 
    PubMed 

    Google Scholar 

  • Moon J-W, Paradis CJ, Joyner DC, von Netzer F, Majumder EL, Dixon ER, et al. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere. 2020;255:126951.

    CAS 
    PubMed 

    Google Scholar 

  • Berkowitz B, Silliman SE, Dunn AM. Impact of the capillary fringe on local flow, chemical migration, and microbiology. Vadose Zo J. 2004;3:534–48.

    CAS 

    Google Scholar 

  • Winter J, Ippisch O, Vogel H-J. Dynamic processes in capillary fringes. Vadose Zo J. 2015;14:1–2.

  • Silliman SE, Berkowitz B, Simunek J, van Genuchten MT. Fluid flow and solute migration within the capillary fringe. Ground Water. 2002;40:76–84.

    CAS 
    PubMed 

    Google Scholar 

  • Haberer CM, Rolle M, Liu S, Cirpka OA, Prathwohl P. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater. J Contam Hydrol. 2011;122:26–39.

    CAS 
    PubMed 

    Google Scholar 

  • Bouskill NJ, Conrad ME, Bill M, Brodie EL, Cheng Y, Hobson C, et al. Evidence for microbial mediated NO3− cycling within floodplain sediments during groundwater fluctuations. Front Earth Sci. 2019;7:189.

    Google Scholar 

  • Rühle FA, von Netzer F, Lueders T, Stumpp C. Response of transport parameters and sediment microbiota to water table fluctuations in laboratory columns. Vadose Zo J. 2015;14:vzj2014.09.0116.

  • Aigle A, Prosser JI, Gubry-Rangin C. The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environ Microbiome. 2019;14:3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. Comparative genomics of marine sponge-derived Streptomyces spp. isolates SM17 and SM18 with their closest terrestrial relatives provides novel insights into environmental niche adaptations and secondary metabolite biosynthesis potential. Front Microbiol. 2019;10:1713.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T, et al. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:754.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 2014;38:720–60.

    CAS 
    PubMed 

    Google Scholar 

  • Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012;20:262–7.

    CAS 
    PubMed 

    Google Scholar 

  • Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, et al. Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes. 2012;3:576–602.

  • Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol. 1947;54:291–303.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boivin-Jahns V, Bianchi A, Ruimy R, Garcin J, Daumas S, Cristen R, et al. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol. 1995;61:3400–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rusterholtz KJ, Mallory LM. Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb Ecol. 1994;28:79–99.

    CAS 
    PubMed 

    Google Scholar 

  • Eschbach M, Möbitz H, Rompf A, Jahn D. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett. 2003;223:227–30.

    CAS 
    PubMed 

    Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D. Stress induced phosphate solubilization by ’Arthrobacter’ Sp. and ’Bacillus’ sp. isolated from tomato rhizosphere. Aust J Crop Sci. 2010;4:378–83.

    CAS 

    Google Scholar 

  • Keddie RM, Collins D, Jones D. Genus Arthrobacter. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG, editors. Bergey’s manual of systematic bacteriology. Vol 2. Williams and Wilkins: New York, NY. 1986. p. 1288–301.

  • Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL. Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology. 2000;146:1295–310.

    CAS 
    PubMed 

    Google Scholar 

  • Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun. 2015;6:8289.

    CAS 
    PubMed 

    Google Scholar 

  • Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J, Li Y, et al. Culturing of “unculturable” subsurface microbes: natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front Microbiol. 2020;11:3171.

    Google Scholar 

  • Watson DB, Kostka JE, Fields MW, Jardine PM. The Oak Ridge Field Research Center conceptual model. NABIR F. Res. Center: Oak Ridge, TN; 2004.

  • Moon J, Roh Y, Phelps TJ, Phillips DH, Watson DB, Kim Y-J, et al. Physicochemical and mineralogical characterization of soil–saprolite cores from a field research site, Tennessee. J Environ Qual. 2006;35:1731–41.

    CAS 
    PubMed 

    Google Scholar 

  • Wu X, Wu L, Liu Y, Zhang P, Li Q, Zhou J, et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front Microbiol. 2018;9:1234.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakraborty R, Woo H, Dehal P, Walker R, Zemla M, Auer M, et al. Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site. Stand Genomic Sci. 2017;12:23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guttenberger M, Hampp R. Ectomycorrhizins—symbiosis-specific or artifactual polypeptides from ectomycorrhizas? Planta. 1992;188:129–36.

    CAS 
    PubMed 

    Google Scholar 

  • Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt D, Chen G, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–D807.

    CAS 
    PubMed 

    Google Scholar 

  • Price MN, Deutschbauer AM, Arkin AP. GapMind: automated annotation of amino acid biosynthesis. mSystems. 2020;5:e00291–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertelli C, Laird MR, Wiliams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Procter JB, Carstairs GM, Soares B, Mourão K, Ofoegbu TC, Barton D, et al. Alignment of biological sequences with Jalview. In: Katoh K Editor. Multiple sequence alignment. Springer, Humana Press: New York, NY. 2021. p. 203–24.

  • Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. https://doi.org/10.1093/nar/gkab301.

  • Eren AM, Esen O, Quince C, Vines JH, Horrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ. 2015;3:e1319.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiong W, Garrity GM, Tiedge JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    Google Scholar 

  • Liao J, Guo X, Weller DL, Pollak S, Buckley DH, Wiedmann M, et al. Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nat Microbiol. 2021;6:1021–30.

    CAS 
    PubMed 

    Google Scholar 

  • Schwyn B, Neilands JB. Universal chemical assay for detection and determination of siderophores. Anal Biochem. 1987;160:47–56.

    CAS 
    PubMed 

    Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernandez FJ. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007;70:127–31.

    PubMed 

    Google Scholar 

  • Nyyssönen M, Tran HM, Karaoz U, Weihe C, Hadi MZ, Martiny JBH, et al. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Front Microbiol. 2013;4:282

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Gregory Caporaso J, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.

    PubMed 

    Google Scholar 

  • Oliveira PL, de, Duarte MCT, Ponezi AN, Durrant LR. Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Paenibacillus sp. Braz J Microbiol. 2009;40:818–26.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Varrot A, Yip VLY, Li Y, Rajan SS, Yang X, Anderson WF, et al. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: structural insight into specificity for phospho-β-D-glucosides. J Mol Biol.2005;346:423–35.

    CAS 
    PubMed 

    Google Scholar 

  • Lambers H. Introduction: dryland salinity: a key environmental issue in southern Australia. Plant Soil. 2003;257:v–vii.

  • Galinski EA, Trüper HG. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev. 1994;15:95–108.

    CAS 

    Google Scholar 

  • Korom SF. Natural denitrification in the saturated zone: a review. Water Resour Res. 1992;28:1657–68.

    CAS 

    Google Scholar 

  • Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, et al. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics. 2012;13:1–19.

    Google Scholar 

  • See-Too W-S, Ee R, Lim Y-L, Convey P, Pearce DA, Mohidin TBM, et al. Complete genome of Arthrobacter alpinus strain R3. 8, bioremediation potential unraveled with genomic analysis. Stand Genomic Sci. 2017;12:1–7.

    Google Scholar 

  • Bazhanov DP, Li C, Li H, Li J, Zhang X, Chen X, et al. Occurrence, diversity and community structure of culturable atrazine degraders in industrial and agricultural soils exposed to the herbicide in Shandong Province, PR China. BMC Microbiol. 2016;16:1–21.

    Google Scholar 

  • Fan X, Nie MQ, Wang Y, Diwu ZJ, Liu L, Liu Y. Characteristics of the co-metabolism of 1-naphthol by Arthrobacter crystallopoietes NT16 and symbiotic Bacillus NG16. Acta Sci Circumstantiae. 2019;39:1482–8.

    CAS 

    Google Scholar 

  • Nakatsu CH, Barabote R, Thompson S, Bruce D, Detter C, Brettin T, et al. Complete genome sequence of Arthrobacter sp. strain FB24. Stand Genomic Sci. 2013;9:106–16.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimasaki T, Masuda S, Garrido-Oter R, Kawasaki T, Aoki Y, Shibata A, et al. Tobacco root endophytic Arthrobacter harbors genomic features enabling the catabolism of host-specific plant specialized metabolites. MBio. 2021;12:e00846–21.

    CAS 
    PubMed Central 

    Google Scholar 

  • Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S. Complete genome sequence of Arthrobacter alpinus ERGS4: 06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya. J Biotechnol. 2016;220:86–87.

    CAS 
    PubMed 

    Google Scholar 

  • Russell DA, Hatfull GF. Complete genome sequence of Arthrobacter sp. ATCC 21022, a host for bacteriophage discovery. Genome Announc. 2016;4:e00168–16.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fomenkov A, Akimov VN, Vasilyeva LV, Andersen DT, Vincze T, Roberts RJ, et al. Complete genome and methylome analysis of psychrotrophic bacterial isolates from Lake Untersee in Antarctica. Genome Announc. 2017;5:e01753–16.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiraoka S, Machiyama A, Ijichi M, Inoue K, Oshima K, Hattori M, et al. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics. 2016;17:1–13.

    Google Scholar 

  • Han S-R, Kim B, Jang JH, Park H, Oh T-J. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation. BMC Genomics. 2021;22:1–14.

    Google Scholar 

  • Koh H-W, Kang M, Lee K, Lee E, Kim H, Park SJ. Arthrobacter dokdonellae sp. nov., isolated from a plant of the genus Campanula. J Microbiol. 2019;57:732–7.

    CAS 
    PubMed 

    Google Scholar 

  • Xu X, Xu M, Zhao Q, Xia Y, Chen C, Shen Z. Complete genome sequence of Cd (II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Curr Microbiol. 2018;75:1231–9.

    CAS 
    PubMed 

    Google Scholar 

  • Lee GLY, Ahmad SA, Yasid NA, Zulkharnain A, Convey P, Johari WLW, et al. Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biol. 2018;41:553–62.

    Google Scholar 

  • Stockdale A, Davison W, Zhang H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth-Science Rev. 2009;92:81–97.

    CAS 

    Google Scholar 

  • Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L. Manganese (II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Biochemistry. 1996;35:160–70.

    CAS 
    PubMed 

    Google Scholar 

  • Jeng W-Y, Wang M, Lin N, Lin C, Liaw Y, Cheng W, et al. Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol. 2011;173:46–56.

    CAS 
    PubMed 

    Google Scholar 

  • Stevenson IL. Utilization of aromatic hydrocarbons by Arthrobacter spp. Can J Microbiol. 1967;13:205–11.

    CAS 
    PubMed 

    Google Scholar 

  • Dsouza M, Taylor MW, Turner SJ, Aislabie J. Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics. 2015;16:36.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor R, Cronin A, Pedley S, Barker J, Atkinson T. The implications of groundwater velocity variations on microbial transport and wellhead protection–review of field evidence. FEMS Microbiol Ecol. 2004;49:17–26.

    CAS 
    PubMed 

    Google Scholar 

  • Zhang X, Liu X, Yang F, Chen L. Pan-genome analysis links the hereditary variation of leptospirillum ferriphilum with its evolutionary adaptation. Front Microbiol. 2018;9:577.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, et al. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics. 2012;13:533.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Sievert S. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aminov R. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kothari A, Wu Y, Chandonia J-M, Charrier M, Rajiv L, Rocha AM, et al. Large circular plasmids from groundwater plasmidomes span multiple incompatibility groups and are enriched in multimetal resistance genes. MBio. 2019;10:e02899–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA, McGlinchey RP, et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 2009;3:1193–203.

    CAS 
    PubMed 

    Google Scholar 

  • Wu X, Kazakov AE, Gushgari-Doyle S, Yu X, Trotter V, Stuart RK, et al. Comparative genomics reveals insights into induction of violacein biosynthesis and adaptive evolution in Janthinobacterium. Microbiol Spectr. 2022;9:e01414–e01421.

    Google Scholar 

  • Jonkheer EM, Brankovics B, Houwers IM, van der Wolf JM, Bonants PJM, Vreeburg RAM, et al. The Pectobacterium pangenome, with a focus on Pectobacterium brasiliense, shows a robust core and extensive exchange of genes from a shared gene pool. BMC Genomics. 2021;22:265.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdel-Glil MY, Rischer U, Steinhagen D, McCarthy U, Neubauer H, Sprague LD. Phylogenetic relatedness and genome structure of Yersinia ruckeri revealed by whole genome sequencing and a comparative analysis. Front Microbiol. 2021;12:782415.

  • González-Dominici LI, Saati-Santamaría Z, García-Fraile P. Genome analysis and genomic comparison of the novel species Arthrobacter ipsi reveal its potential protective role in its bark beetle host. Microb Ecol. 2021;81:471–82.

    PubMed 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.

    CAS 
    PubMed 

    Google Scholar 

  • Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol. 1997;63:2330–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.

    Google Scholar 


  • Source: Ecology - nature.com

    How molecular biology could reduce global food insecurity

    Improving predictions of sea level rise for the next century