in

Small brains predisposed Late Quaternary mammals to extinction

  • Martin, P. S. & Klein, R. G. Quaternary extinctions: a prehistoric revolution. (University of Arizona Press, 1984).

  • Waguespack, N. M. & Surovell, T. A. Clovis hunting strategies, or how to make out on plentiful resources. Am. Antiq. 68, 333–352 (2003).

    Google Scholar 

  • Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proc. Natl. Acad. Sci. 113, 886–891 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Martin, P. S. Prehistoric overkill: the global model. In Quaternary extinctions: a prehistoric revolution (eds. Martin, P. S. & Klein, R. G.) 355–403 (University of Arizona Press, 1984).

  • Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quatern. Int. 217, 10–29 (2010).

    Google Scholar 

  • Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl. Acad. Sci. 109, 4527–4531 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).

    Google Scholar 

  • Wolfe, A. L. & Broughton, J. M. A foraging theory perspective on the associational critique of North American Pleistocene overkill. J. Archaeol. Sci. 119, 105162 (2020).

    Google Scholar 

  • Berger, J., Swenson, J. E. & Persson, I. L. Recolonizing carnivores and naïve prey: Conservation lessons from pleistocene extinctions. Science 291, 1036–1039 (2001).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Brook, B. W. & Bowman, D. M. J. S. The uncertain blitzkrieg of Pleistocene megafauna. J. Biogeogr. 31, 517–523 (2004).

    Google Scholar 

  • Johnson, C. N. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. R. Soc. London. Ser. B Biol. Sci. 269, 2221–2227 (2002).

    CAS 

    Google Scholar 

  • Bourgon, N. et al. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes. J. Hum. Evol. 161, 103075 (2021).

    PubMed 

    Google Scholar 

  • Meltzer, D. J. Overkill, glacial history, and the extinction of North America’s Ice Age megafauna. Proc. Natl. Acad. Sci. 117, 28555–28563 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).

    Google Scholar 

  • Cardillo, M. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Meiri, S. & Liang, T. Rensch’s rule—Definitions and statistics. Glob. Ecol. Biogeogr. 30, 573–577 (2021).

    Google Scholar 

  • Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, 20160342 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alroy, J. A multispecies overkill simulation of the end-pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, 1–12 (2021).

    Google Scholar 

  • Jerison, H. J. Evolution of the Brain and Intelligence (Academic Press, 1973). https://doi.org/10.2307/4512058.

    Book 

    Google Scholar 

  • Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).

    PubMed 

    Google Scholar 

  • Møller, A. P. & Erritzøe, J. Brain size in birds is related to traffic accidents. R. Soc. Open Sci. 4, 161040 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).

    Google Scholar 

  • Budd, G. E. & Jensen, S. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biol. Rev. 92, 446–473 (2017).

    PubMed 

    Google Scholar 

  • Benoit, J. et al. Brain evolution in Proboscidea (Mammalia, Afrotheria) across the Cenozoic. Sci. Rep. 9, 9323 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Møller, A. P. & Erritzøe, J. Brain size and the risk of getting shot. Biol. Lett. 12, 20160647 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Febbraro, M. et al. Does the jack of all trades fare best? Survival and niche width in Late Pleistocene megafauna. J. Biogeogr. 44, 2828–2838 (2017).

    Google Scholar 

  • Morris, S. D., Kearney, M. R., Johnson, C. N. & Brook, B. W. Too hot for the devil? Did climate change cause the mid-Holocene extinction of the Tasmanian devil Sacrophilus harrisii from mainland Australia? Ecography 2022, (2022).

  • Fillios, M., Crowther, M. S. & Letnic, M. The impact of the dingo on the thylacine in Holocene Australia. World Archaeol. 44, 118–134 (2012).

    Google Scholar 

  • González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).

    PubMed 

    Google Scholar 

  • Barton, R. A. & Capellini, I. Maternal investment, life histories, and the costs of brain growth in mammals. Proc. Natl. Acad. Sci. U.S.A. 108, 6169–6174 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Abelson, E. S. Brain size is correlated with endangerment status in mammals. Proc. R. Soc. B Biol. Sci. 283, 20152772 (2016).

    Google Scholar 

  • Gonzalez-Voyer, A., González-Suárez, M., Vilà, C. & Revilla, E. Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution (N.Y.) 70, 1364–1375 (2016).

    Google Scholar 

  • Ives, A. R. & Helmus, M. R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 81, 511–525 (2011).

    Google Scholar 

  • Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).

    Google Scholar 

  • Billet, G. Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J. Syst. Palaeontol. 9, 481–497 (2011).

    Google Scholar 

  • Shultz, S., Bradbury, R. B., Evans, K. L., Gregory, R. D. & Blackburn, T. M. Brain size and resource specialization predict long-term population trends in British birds. Proc. R. Soc. B Biol. Sci. 272, 2305–2311 (2005).

    Google Scholar 

  • Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).

    PubMed 

    Google Scholar 

  • Abelson, E. S. Big brains reduce extinction risk in Carnivora. Oecologia 191, 721–729 (2019).

    PubMed 
    ADS 

    Google Scholar 

  • Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proceedings of the National Academy of Sciences 117, 7871–7878 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proceedings of the National Academy of Sciences 107, 21582–21586 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gould, S. J. & Vrba, E. S. Exaptation—A missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Google Scholar 

  • Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl. Acad. Sci. U.S.A. 110, 8777–8781 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the Causes of Late Pleistocene Extinctions on the Continents. Science 306, 70–75 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Profico, A., Buzi, C., Melchionna, M., Veneziano, A. & Raia, P. Endomaker, a new algorithm for fully automatic extraction of cranial endocasts and the calculation of their volumes. Am. J. Phys. Anthropol. 172, 511–515 (2020).

    PubMed 

    Google Scholar 

  • Damuth, J. & Macfadden, B. J. Body Size in Mammalian Paleobiology: Estimation and Biological Implications (Cambridge University Press, 1990).

    Google Scholar 

  • Zagwijn, W. H. The beginning of the Ice Age in Europe and its major subdivisions. Quatern. Sci. Rev. 11, 583–591 (1992).

    ADS 

    Google Scholar 

  • Hearty, P. J., Hollin, J. T., Neumann, A. C., O’Leary, M. J. & McCulloch, M. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quatern. Sci. Rev. 26, 2090–2112 (2007).

    ADS 

    Google Scholar 

  • Ashwell, K. W. S., Hardman, C. D. & Musser, A. M. Brain and behaviour of living and extinct echidnas. Zoology 117, 349–361 (2014).

    PubMed 

    Google Scholar 

  • Castiglione, S. et al. The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals. Biol. J. Linn. Soc. 132, 221–231 (2021).

    Google Scholar 

  • Wilkins, A. S., Wrangham, R. W. & Tecumseh Fitch, W. The ‘domestication syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sayol, F., Steinbauer, M. J., Blackburn, T. M., Antonelli, A. & Faurby, S. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Sci. Adv. 6, eabb6095 (2020).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Fromm, A., Meiri, S. & McGuire, J. Big, flightless, insular and dead: Characterising the extinct birds of the Quaternary. J. Biogeogr. 48(9), 2350–2359. https://doi.org/10.1111/jbi.14206 (2021).

    Article 

    Google Scholar 

  • Meiri, S., Dayan, T. & Simberloff, D. The generality of the island rule reexamined. J. Biogeogr. 33, 1571–1577 (2006).

    Google Scholar 

  • Larramendi, A. & Palombo, M. R. Body Size, Structure, Biology and Encephalization Quotient of Palaeoloxodon ex gr. P. falconeri from Spinagallo Cave (Hyblean plateau, Sicily). Hystrix, the Italian Journal of Mammalogy 26, 102–109 (2015).

    Article 

    Google Scholar 

  • Slavenko, A., Tallowin, O. J. S., Itescu, Y., Raia, P. & Meiri, S. Late Quaternary reptile extinctions: Size matters, insularity dominates. Glob. Ecol. Biogeogr. 25, 1308–1320 (2016).

    Google Scholar 

  • Tracy, C. R. & George, T. L. On the determinants of extinction. Am. Nat. 139, 102–122 (1992).

    Google Scholar 

  • Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).

    CAS 
    ADS 

    Google Scholar 

  • Turvey, S. T. In the shadow of the megafauna: prehistoric mammal and bird extinctions across the Holocene. in Holocene Extinctions 17–40 (Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780199535095.003.0002

  • Ebinger, P. A cytoarchitectonic volumetric comparison of brains in wild and domestic sheep. Zeitschrift für Anat. und Entwicklungsgeschichte 144, 267–302 (1974).

    CAS 

    Google Scholar 

  • Röhrs, M. & Ebinger, P. Welche quantitativen beziehungen bestehen bei säugetieren zwischen schädelkapazität und hirnvolumen? Mammalian Biology 66, 102–110 (2001).

  • Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav. Evol. 63, 125–140 (2004).

    PubMed 

    Google Scholar 

  • de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).

    Google Scholar 

  • Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 Package. October (2007).

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  • Raia, P. & Meiri, S. The tempo and mode of evolution: Body sizes of island mammals. Evolution 65, 1927–1934 (2011).

    Google Scholar 

  • Montgomery, S. H. et al. The evolutionary history of cetacean brain and body size. Evolution 67, 3339–3353 (2013).

    PubMed 

    Google Scholar 

  • Li, D., Dinnage, R., Nell, L. A., Helmus, M. R. & Ives, A. R. phyr: An r package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).

    Google Scholar 

  • Melchionna, M. et al. Macroevolutionary trends of brain mass in Primates. Biological Journal of the Linnean Society 129, 14–25 (2020).

    Article 

    Google Scholar 

  • Serio, C. et al. Macroevolution of toothed whales exceptional relative brain size. Evol. Biol. 46, 332–342 (2019).

    Google Scholar 

  • Wickham, H. et al. Welcome to the Tidyverse. Journal of Open Source Software 4, 1686 (2019).

  • Barton, K. Package ‘MuMIn’ Title Multi-Model Inference. CRAN-R (2018).


  • Source: Ecology - nature.com

    Improving predictions of sea level rise for the next century

    A hierarchical inventory of the world’s mountains for global comparative mountain science