in

Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean

  • Volk T, Hoffert MI. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS. (eds). The carbon cycle and atmospheric CO2: Natural variations archean to present. American Geophysical Union, Geophysical Monograph, Washington, DC: 1985. p. 32:99–110.

  • Scharek R, Tupas LM, Karl DM. Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA. Mar Ecol-Prog Ser. 1999;182:55–67.

    Google Scholar 

  • Simon M, Grossart H, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Micro Ecol. 2002;28:175–211.

    Google Scholar 

  • Siegenthaler U, Sarmiento JL. Atmospheric carbon dioxide and the ocean. Nature. 1993;365:119–25.

    CAS 

    Google Scholar 

  • Ducklow H, Steinberg DK. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:50–58.

    Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol. 2010;8:593–9.

    CAS 
    PubMed 

    Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr. 1993;38:924–34.

    Google Scholar 

  • Allen AE, Allen LZ, McCrow JP. Lineage specific gene family enrichment at the microscale in marine systems. Curr Opin Microbiol. 2013;16:605–17.

    CAS 
    PubMed 

    Google Scholar 

  • D’Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J. 2014;8:2167–79.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap. 1987;34:267–85.

    CAS 

    Google Scholar 

  • Buesseler KO. The decoupling of production and particulate export in the surface ocean. Glob Biogeochem Cycle. 1998;12:297–310.

    CAS 

    Google Scholar 

  • Schlitzer R. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Kasibhata P, editor. Inverse Methods in Global biogeochemical Cycles. Washington, DC: American Geophysical Union; 2000. p. 114:107–24.

  • Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr. 2008;53:1327–38.

    Google Scholar 

  • Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.

    CAS 

    Google Scholar 

  • Herndl GJ, Reinthaler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergh Ø, Borsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989;340:467–8.

    CAS 
    PubMed 

    Google Scholar 

  • Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.

    CAS 
    PubMed 

    Google Scholar 

  • Zhang R, Wei W, Cai L. The fate and biogeochemical cycling of viral elements. Nat Rev Microbiol. 2014;12:850–1.

    CAS 
    PubMed 

    Google Scholar 

  • Middelboe M, Lyck PG. Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat Micro Ecol. 2002;27:187–94.

    Google Scholar 

  • Weinbauer MG, Brettar I, Hofle MG. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr. 2003;48:1457–65.

    Google Scholar 

  • Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.

    CAS 
    PubMed 

    Google Scholar 

  • Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol. 2014;12:519–28.

    CAS 
    PubMed 

    Google Scholar 

  • Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Appl Environ Microbiol. 2005;71:6644–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinbauer MG, Bettarel Y, Cattaneo R, Luef B, Maier C, Motegi C, et al. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research. Aquat Micro Ecol. 2009;57:321–41.

    CAS 

    Google Scholar 

  • Tian Y, Cai L, Xu Y, Luo T, Zhao Z, Wang Q, et al. Stability and infectivity of allochthonous viruses in deep sea: A long-term high pressure simulation experiment. Deep-Sea Res Part I-Oceanogr Res Pap. 2020;161:103302.

    Google Scholar 

  • Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang R, Li Y, Yan W, Wang Y, Cai L, Luo T, et al. Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun Biol. 2020;3:256.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woźniak SB, Stramski D, Stramska M, Reynolds RA, Wright VM, Miksic EY, et al. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J Geophys Res. 2010;115:C08027.

    Google Scholar 

  • White AE, Letelier RM, Whitmire AL, Barone B, Bidigare RR, Church MJ, et al. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA). J Geophys Res-Oceans. 2015;120:7381–99.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaulot D, Courties C, Partensky F. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytom Part A. 1989;10:629–35.

    CAS 

    Google Scholar 

  • Chen X, Liu H, Weinbauer M, Chen B, Jiao N. Viral dynamics in the surface water of the western South China Sea in summer 2007. Aquat Micro Ecol. 2011;63:145–60.

    Google Scholar 

  • Wei W, Zhang R, Peng L, Liang Y, Jiao N. Effects of temperature and photosynthetically active radiation on virioplankton decay in the western Pacific Ocean. Sci Rep. 2018;8:1525–34.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marie D, Partensky F, Vaulot D, Brussaard C. Numeration of phytoplankton, bacteria and viruses in marine samples. Curr Protoc Cytom. 1999;11:1–15.

    Google Scholar 

  • Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brussaard CP. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilhelm SW, Brigden SM, Suttle CA. A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Micro Ecol. 2002;43:168–73.

    CAS 

    Google Scholar 

  • Weinbauer MG, Rowe JM, Wilhelm SW. Determining rates of virus production in aquatic systems by the virus reduction approach. In: Wilhelm SW, Weinbauer MG, Suttle CA. (eds). Manual of Aquatic Viral Ecology. American Society of Limnology and Oceanography Inc., Waco, TX: 2010. p. 1–8.

  • Chen X, Wei W, Wang J, Li H, Sun J, Ma R, et al. Tide driven microbial dynamics through virus-host interactions in the estuarine ecosystem. Water Res. 2019;160:118–29.

    CAS 
    PubMed 

    Google Scholar 

  • Luef B, Luef F, Peduzzi P. Online program ‘vipcal’ for calculating lytic viral production and lysogenic cells based on a viral reduction approach. Environ Microbiol Rep. 2009;1:78–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winget DM, Helton RR, Williamson KE, Bench SR, Williamson SJ. Repeating patterns of virioplankton production within an estuarine ecosystem. Proc Natl Acad Sci USA. 2011;108:11506–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei W, Wang N, Cai L, Zhang C, Jiao N, Zhang R. Impacts of freshwater and seawater mixing on the production and decay of virioplankton in a subtropical estuary. Micro Ecol. 2019;78:843–54.

    CAS 

    Google Scholar 

  • Noble RT, Fuhrman JA. Virus decay and its causes in coastal waters. Appl Environ Microbiol. 1997;63:77–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suttle CA, Chen F. Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol. 1992;58:3721–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rowe JM, Saxton MA, Cottrell MT, DeBruyn JM, Berg GM, Kirchman DL, et al. Constraints on viral production in the Sargasso Sea and North Atlantic. Aquat Micro Ecol. 2008;52:233–44.

    Google Scholar 

  • Evans C, Pearce I, Brussaard CP. Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and Polar Frontal zones of the Australian Southern Ocean. Environ Microbiol. 2009;11:2924–34.

    CAS 
    PubMed 

    Google Scholar 

  • De Corte D, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.

    PubMed 

    Google Scholar 

  • Li Y, Lou T, Sun J, Cai L, Liang Y, Jiao N, et al. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean. Biogeosciences. 2014;11:2531–42.

    Google Scholar 

  • Liang Y, Zhang Y, Zhang Y, Luo T, Rivkin R, Jiao N. Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Western Pacific Ocean. FEMS Microbiol Ecol. 2017;93:fiw238.

    PubMed 

    Google Scholar 

  • Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69–114.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev. 2016;92:1081–1100.

    PubMed 

    Google Scholar 

  • Parada V, Herndl GJ, Weinbauer MG. Viral burst size of heterotrophic prokaryotes in aquatic systems. J Mar Biol Assoc UK. 2006;86:613–21.

    Google Scholar 

  • Yuan D. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceano Sin. 2002;21:187–202.

    Google Scholar 

  • Tian J, Yang Q, Zhao W. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr. 2009;39:3191–203.

    Google Scholar 

  • Alford MH, Lien R, Simmons H, Klymak J, Ramp S, Yang YJ, et al. Speed and evolution of nonlinear internal waves transiting the South China Sea. J Phys Oceanogr. 2010;40:1338–55.

    Google Scholar 

  • Parada V, Sintes E, Van Aken HM, Weinbauer MG, Herndl GJ. Viral abundance, decay, and diversity in the meso- and bathypelagic waters of the north atlantic. Appl Environ Microbiol. 2007;73:4429–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Corte D, Sintes E, Yokokawa T, Reinthaler T, Herndl GJ. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME J. 2012;6:1566–77.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zachary A. An ecological study of bacteriophages of Vibrio natriegens. Appl Environ Microbiol. 1978;24:321–4.

    CAS 

    Google Scholar 

  • Motegi C, Nagata T. Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific. Aquat Micro Ecol. 2007;48:27.

    Google Scholar 

  • Bratbak G, Egge JK, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol-Prog Ser. 1993;93:39–48.

    Google Scholar 

  • Motegi C, Kaiser K, Benner R, Weinbauer MG. Effect of P-limitation on prokaryotic and viral production in surface waters of the Northwestern Mediterranean Sea. J Plankton Res. 2015;37:16–20.

    CAS 

    Google Scholar 

  • Hewson I, O’Neil JM, Fuhrman JA, Dennison WC. Virus-like particle distribution and abundance in sediments and overmaying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr. 2001;46:1734–46.

    Google Scholar 

  • Wilson WH, Mann NH. Lysogenic and lytic viral production in marine microbial communities. Aquat Micro Ecol. 1997;13:95–100.

    Google Scholar 

  • Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.

    CAS 
    PubMed 

    Google Scholar 

  • Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H. Phage-host interaction: an ecological perspective. J Bacteriol. 2004;186:3677–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.

    CAS 
    PubMed 

    Google Scholar 

  • Williamson SJ, Paul JH. Nutrient stimulation of lytic phage production in bacterial populations of the Gulf of Mexico. Aquat Micro Ecol. 2004;36:9–17.

    Google Scholar 

  • Williamson SJ, Paul JH. Environmental factors that influence the transition from lysogenic to lytic existence in the ϕHSIC/Listonella pelagia marine phage–host system. Micro Ecol. 2006;52:217–25.

    CAS 

    Google Scholar 

  • Cissoko M, Desnues A, Bouvy M, Sime-Ngando T, Verling E, Bettarel Y. Effects of freshwater and seawater mixing on virio- and bacterioplankton in a tropical estuary. Freshw Biol. 2008;53:1154–62.

    Google Scholar 

  • Bettarel Y, Bouvier T, Agis M, Bouvier C, Van Chu T, Combe M, et al. Viral distribution and life strategies in the Bach Dang Estuary, Vietnam. Micro Ecol. 2011;62:143–54.

    Google Scholar 

  • Shkilnyj P, Koudelka GB. Effect of salt shock on stability of λimm434 lysogens. J Bacteriol. 2007;189:3115–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tuomi P, Fagerbakke KM, Bratbak G, Heldal M. Nutritional enrichment of a microbial community: the effects on activity, elemental composition, community structure and virus production. FEMS Microbiol Ecol. 1995;16:23–134.

    Google Scholar 

  • Dell’Anno A, Corinaldesi C, Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci USA. 2015;112:E2014–E2019.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mojica KD, Brussaard CP. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol Ecol. 2014;89:495–515.

    CAS 
    PubMed 

    Google Scholar 

  • Zweifel UL. Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga. Estuar Coast Shelf Sci. 1999;48:357–70.

    CAS 

    Google Scholar 

  • Pomeroy LR, Wiebe WJ. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Micro Ecol. 2001;23:187–204.

    Google Scholar 

  • Ploug H, Grossart H, Azam F, Jørgensen BB. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar Ecol-Prog Ser. 1999;179:1–11.

    CAS 

    Google Scholar 

  • Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nature. 2007;5:782–91.

    CAS 

    Google Scholar 

  • De Corte D, Sintes E, Yokokawa T, Lekunberri I, Herndl GJ. Large-scale distribution of microbial and viral populations in the South Atlantic Ocean. Environ Microbiol Rep. 2016;8:305–15.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang YH, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.

    Google Scholar 

  • Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 2019;13:232–6.

    CAS 
    PubMed 

    Google Scholar 

  • Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.

    CAS 
    PubMed 

    Google Scholar 

  • Peduzzi P, Weinbauer M. Effect of concentrating the virus-rich 2–200 nm size fraction of seawater on the formation of algal flocs (marine snow). Limnol Oceanogr. 1993;38:1562–5.

    Google Scholar 

  • Uitz J, Stramski D, Baudoux A, Reynolds RA, Wright VM, Dubranna J, et al. Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria. Limnol Oceanogr. 2010;55:2317–30.

    Google Scholar 

  • Sullivan MB, Weitz JS, Wilhelm SW. Viral ecology comes of age. Environ Microbiol Rep. 2017;9:33–35.

    PubMed 

    Google Scholar 

  • Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ, Schieler BM, et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat Microbiol. 2018;3:537–47.

    CAS 
    PubMed 

    Google Scholar 

  • Kranzler CF, Brzezinski MA, Cohen NR, Lampe RH, Maniscalco M, Till CP, et al. Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nat Geosci. 2021;4:231–7.

    Google Scholar 

  • Hewson I, Fuhrman JA. Viriobenthos production and virioplankton sorptive scavenging by suspended sediment particles in coastal and pelagic waters. Micro Ecol. 2003;46:337–47.

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction

    Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal