in

A global map of planting years of plantations

  • FAO & UNEP. The state of the world’s forests 2020: Forests, biodiversity and people (2020).

  • Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nature Communications 8, 1–6 (2017).

    ADS 

    Google Scholar 

  • Mitchard, E. T. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tsujino, R., Yumoto, T., Kitamura, S., Djamaluddin, I. & Darnaedi, D. History of forest loss and degradation in Indonesia. Land use policy 57, 335–347 (2016).

    Google Scholar 

  • Holl, K. D. & Brancalion, P. H. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecological Indicators 61, 404–412 (2016).

    Google Scholar 

  • Soliño, M., Oviedo, J. L. & Caparrós, A. Are forest landowners ready for woody energy crops? Preferences for afforestation programs in Southern Spain. Energy Economics 73, 239–247 (2018).

    Google Scholar 

  • Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment 8, 27–34 (2010).

    Google Scholar 

  • Zulkefli, F., Syahlan, S. & Aziz, M. F. A. Negatives Impact Faced by Oil Palm Estate Management in managing Foreign Workers: A Case Study. International Journal of Academic Research in Business and Social Sciences 8 (2018).

  • Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends in ecology & evolution 23, 538–545 (2008).

    Google Scholar 

  • Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PloS one 11, e0159668 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh, L. P., Miettinen, J., Liew, S. C. & Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences 108, 5127–5132 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Guillaume, T. et al. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nature communications 9, 1–11 (2018).

    CAS 

    Google Scholar 

  • Lucas-Borja, M. E., Hedo, J., Cerdá, A., Candel-Pérez, D. & Viñegla, B. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. ssp. salzmannii) Forest. Science of the Total Environment 562, 145–154 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Besnard, S. et al. Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters 13, 124018 (2018).

    ADS 

    Google Scholar 

  • Dzikiti, S. et al. Estimating the water requirements of high yielding and young apple orchards in the winter rainfall areas of South Africa using a dual source evapotranspiration model. Agricultural water management 208, 152–162 (2018).

    Google Scholar 

  • Zhang, Y., Yao, Y., Wang, X., Liu, Y. & Piao, S. Mapping spatial distribution of forest age in China. Earth and Space Science 4, 108–116 (2017).

    ADS 

    Google Scholar 

  • Chen, B., Jin, Y. & Brown, P. Automatic mapping of planting year for tree crops with Landsat satellite time series stacks. ISPRS Journal of Photogrammetry and Remote Sensing 151, 176–188 (2019).

    ADS 

    Google Scholar 

  • Danylo, O. et al. A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand. Scientific data 8, 1–8 (2021).

    Google Scholar 

  • O’Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R. & Foster, R. B. Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76, 1926–1939 (1995).

    Google Scholar 

  • Fichtler, E., Clark, D. A. & Worbes, M. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C1. Biotropica 35, 306–317 (2003).

    Google Scholar 

  • Zhang, C. et al. Mapping forest stand age in China using remotely sensed forest height and observation data. Journal of Geophysical Research: Biogeosciences 119, 1163–1179 (2014).

    ADS 

    Google Scholar 

  • Wang, B., Li, M., Fan, W., Yu, Y. & Chen, J. M. Relationship between net primary productivity and forest stand age under different site conditions and its implications for regional carbon cycle study. Forests 9, 5 (2018).

    Google Scholar 

  • Wang, S. et al. Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. Journal of environmental management 92, 1651–1662 (2011).

    PubMed 

    Google Scholar 

  • Gupta, N., Kukal, S., Bawa, S. & Dhaliwal, G. Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agroforestry Systems 76, 27–35 (2009).

    Google Scholar 

  • Huang, C. et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment 114, 183–198 (2010).

    ADS 

    Google Scholar 

  • Thomas, N. E. et al. Validation of North American forest disturbance dynamics derived from Landsat time series stacks. Remote Sensing of Environment 115, 19–32 (2011).

    ADS 
    MathSciNet 

    Google Scholar 

  • Ye, S., Rogan, J., Zhu, Z. & Eastman, J. R. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochastic continuous change detection. Remote Sensing of Environment 252, 112167 (2021).

    ADS 

    Google Scholar 

  • Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote sensing of Environment 114, 106–115 (2010).

    ADS 

    Google Scholar 

  • Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sensing of Environment 114, 2897–2910 (2010).

    ADS 

    Google Scholar 

  • Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E. & Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote sensing of environment 205, 131–140 (2018).

    ADS 

    Google Scholar 

  • Vogeler, J. C., Braaten, J. D., Slesak, R. A. & Falkowski, M. J. Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015). Remote sensing of environment 209, 363–374 (2018).

    ADS 

    Google Scholar 

  • de Jong, S. M. et al. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. International Journal of Applied Earth Observation and Geoinformation 97, 102293 (2021).

    Google Scholar 

  • Harris, N., Goldman, E. D. & Gibbes, S. Spatial database of planted trees (SDPT VERSION 1.0). Technical Note. (2019).

  • Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth System Science Data 13, 1211–1231 (2021).

    ADS 

    Google Scholar 

  • Li, C. et al. The first all-season sample set for mapping global land cover with landsat-8 data. Science Bulletin 62, 508–515 (2017).

    ADS 

    Google Scholar 

  • Masek, J. G. et al. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3, 68–72 (2006).

    ADS 

    Google Scholar 

  • Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment 185, 46–56 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote sensing of environment 194, 379–390 (2017).

    ADS 

    Google Scholar 

  • Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nature Geoscience 12, 632–637 (2019).

    CAS 

    Google Scholar 

  • He, T. et al. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach. Remote Sensing of Environment 204, 181–196 (2018).

    ADS 

    Google Scholar 

  • Flood, N. Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: a study in the Australian landscape. Remote Sensing 6, 7952–7970 (2014).

    ADS 

    Google Scholar 

  • Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote sensing of Environment 185, 57–70 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Key, C. & Benson, N. Landscape assessment: remote sensing of severity, the normalized burn ratio and ground measure of severity, the composite burn index. FIREMON: Fire effects monitoring and inventory system Ogden, Utah: USDA Forest Service, Rocky Mountain Res. Station (2005).

  • Guo, J. & Gong, P. The potential of spectral indices in detecting various stages of afforestation over the Loess Plateau Region of China. Remote Sensing 10, 1492 (2018).

    ADS 

    Google Scholar 

  • Kennedy, R. E. et al. Implementation of the LandTrendr algorithm on google earth engine. Remote Sensing 10, 691 (2018).

    ADS 

    Google Scholar 

  • Yu, L. et al. A multi-resolution global land cover dataset through multisource data aggregation. Science China Earth Sciences 57, 2317–2329 (2014).

    ADS 

    Google Scholar 

  • Du, Z. et al. A global map of planting years of plantations. figshare https://doi.org/10.6084/m9.figshare.19070084.v1 (2022).

  • Gong, P. et al. Finer resolution observation and monitoring of global land cover: First mapping results with landsat tm and etm+ data. International Journal of Remote Sensing 34, 2607–2654 (2013).

    ADS 

    Google Scholar 

  • Huang, H. et al. The migration of training samples towards dynamic global land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing 161, 27–36 (2020).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction

    Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal