Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the World’s Marine Ecosystems. Science 328, 1523–1528 (2010).
Google Scholar
Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Biol. 22, 2665–2675 (2016).
Google Scholar
Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Sci. Anthropocene. https://doi.org/10.1525/elementa.203 (2017).
Google Scholar
Leslie, H. M. A synthesis of marine conservation planning approaches. Conserv. Biol. 19, 1701–1713 (2005).
Oppel, S. et al. Spatial scales of marine conservation management for breeding seabirds. Mar. Policy 98, 37–46 (2018).
Manea, E., Bianchelli, S., Fanelli, E., Danovaro, R. & Gissi, E. Towards an ecosystem-based marine spatial planning in the deep Mediterranean Sea. Sci. Total Environ. 715, 136884 (2020).
Google Scholar
Aylesworth, L., Phoonsawat, R., Suvanachai, P. & Vincent, A. C. J. Generating spatial data for marine conservation and management. Biodivers. Conserv. 26, 383–399 (2017).
Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).
James, N. P., Ginsburg, R. N. & Ginsburg, R. N. The Seaward Margin of Belize Barrier and Atoll Reefs: Morphology, Sedimentology, Organism Distribution, and Late Quaternary History (Blackwell Scientific, 1979).
Ginsburg, R. N., Harris, P. M., Eberli, G. P. & Swart, P. K. The growth potential of a bypass margin, Great Bahama Bank. J. Sediment. Res. 61, 976–987 (1991).
Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems. Coral Reefs of the World (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_1.
Google Scholar
Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).
Hinderstein, L. M. et al. Theme section on “Mesophotic coral ecosystems: Characterization, ecology, and management”. Coral Reefs 29, 247–251 (2010).
Google Scholar
J. A. Turner, D. A. Andradi-Brown, A. Gori, P. Bongaerts, H. L. Burdett, C. Ferrier-Pagès, C. R. Voolstra, D. K. Weinstein, T. C. L. Bridge, F. Costantini, E. Gress, J. Laverick, Y. Loya, G. Goodbody-Gringley, S. Rossi, M. L. Taylor, N. Viladrich, J. D. Voss, J. Williams, L. C. Woodall, G. Eyal. in Mesophotic Coral Ecosystems, Coral Reefs of the World, 989–1003 (Y. Loya, K. A. Puglise, T. C. L. Bridge, Eds). (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_52.
Baker, E. K., Puglise, K. A., Harris, P. T., United Nations Environment Programme, GRID-Arendal. Mesophotic Coral Ecosystems: A Lifeboat for Coral Reefs? (United Nations Environment Programme and GRID-Arendal, 2016).
Lang, J. C. Biological Zonation at the Base of a Reef: Observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. Am. Scientist. 62, 272–281 (1974).
Google Scholar
J. K. Reed. Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. in Proceedings of the 5th International Coral Reef Symposium (1985), Vol. 6, 249–254.
Hanisak, M. D. & Blair, S. M. The deep-water macroalgal community of the East Florida continental shelf (USA). Helgolander Meeresunters. 42, 133–163 (1988).
Aponte, N. E. & Ballantine, D. L. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res. Part I 48, 2185–2194 (2001).
Fricke, H. W., Vareschi, E. & Schlichter, D. Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73, 371–381 (1987).
Google Scholar
Kahng, S. & Maragos, J. The deepest, zooxanthellate scleractinian corals in the world?. Coral Reefs 25, 254–254 (2006).
Google Scholar
Maragos, J. E. & Jokiel, P. L. Reef corals of Johnston Atoll: One of the world’s most isolated reefs. Coral Reefs 4, 141–150 (1986).
Google Scholar
Bridge, T. C. L. et al. Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar. Ecol. Progress Series 428, 63–75 (2011).
Google Scholar
Lesser, M. P. & Slattery, M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol. Invasions 13, 1855–1868 (2011).
Slattery, M. & Lesser, M. P. The Bahamas and Cayman Islands. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_3.
Google Scholar
Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J. Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41 (2011).
Lesser, M. P., Slattery, M., Laverick, J. H., Macartney, K. J. & Bridge, T. C. Global community breaks at 60 m on mesophotic coral reefs. Glob. Ecol. Biogeogr. 28, 1403–1416 (2019).
Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 10, e02839 (2019).
Laverick, J. H., Green, T. K., Burdett, H. L., Newton, J. & Rogers, A. D. Depth alone is an inappropriate proxy for physiological change in the mesophotic coral Agaricia lamarcki. J. Mar. Biol. Assoc. UK 99, 1535–1546 (2019).
Lesser, M. P., Mobley, C. D., Hedley, J. D. & Slattery, M. Incident light on mesophotic corals is constrained by reef topography and colony morphology. Mar. Ecol. Prog. Ser. 670, 49–60 (2021).
Google Scholar
Cerrano, C. et al. Temperate mesophotic ecosystems: Gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).
Idan, T. et al. Shedding light on an East-Mediterranean mesophotic sponge ground community and the regional sponge fauna. Mediterr. Mar. Sci. 19, 84–106 (2018).
Idan, T., Goren, L., Shefer, S., Brickner, I. & Ilan, M. Does depth matter? Reproduction pattern plasticity in two common sponge species found in both mesophotic and shallow waters. Front. Mar. Sci. 7, 1078 (2020).
Enrichetti, F. et al. Megabenthic communities of the Ligurian deep continental shelf and shelf break (NW Mediterranean Sea). PLoS ONE 14, e0223949 (2019).
Google Scholar
Kahng, S. E. et al. Coral reefs of the world. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_42 (801–828).
Google Scholar
D’Ortenzio, F. & Ribera d’Alcalà, M. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 6, 139–148 (2009).
Google Scholar
Christaki, U. et al. Microbial food webs and metabolic state across oligotrophic waters of the Mediterranean Sea during summer. Biogeosciences 8, 1839–1852 (2011).
Google Scholar
Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).
Google Scholar
Basterretxea, G., Font-Muñoz, J. S., Salgado-Hernanz, P. M., Arrieta, J. & Hernández-Carrasco, I. Patterns of chlorophyll interannual variability in Mediterranean biogeographical regions. Remote Sens. Environ. 215, 7–17 (2018).
Google Scholar
Tanhua, T. et al. Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011. Earth Syst. Sci. Data 5, 289–294 (2013).
Google Scholar
Bethoux, J. P. Budgets of the Mediterranean Sea-their dependance on the local climate and on the characteristics of the Atlantic waters. Oceanol. Acta 2, 157–163 (1979).
Azov, Y. Eastern Mediterranean—A marine desert?. Mar. Pollut. Bull. 23, 225–232 (1991).
Pinardi, N., Zavatarelli, M., Arneri, E., Crise, A. & Ravaioli, M. The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. The Sea 14, 1243–1330 (2006).
Rodolfo-Metalpa, R. et al. Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob. Change Biol. 21, 2238–2248 (2015).
Google Scholar
Bo, M. et al. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol. Cons. 171, 167–176 (2014).
Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).
L. Bramanti, M. C. Benedetti, R. Cupido, S. Cocito, C. Priori, F. Erra, M. Iannelli, G. Santangelo. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 529–548 (S. Rossi, L. Bramanti, A. Gori, C. Orejas Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_13.
Capdevila, P., Linares, C., Aspillaga, E., Riera, J. L. & Hereu, B. Effective dispersal and density-dependence in mesophotic macroalgal forests: Insights from the Mediterranean species Cystoseira zosteroides. PLoS ONE 13, e0191346 (2018).
Google Scholar
Angeletti, L. et al. A brachiopod biotope associated with rocky bottoms at the shelf break in the central Mediterranean Sea: Geobiological traits and conservation aspects. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 402–411 (2020).
Angeletti, L. & Taviani, M. Offshore Neopycnodonte Oyster Reefs in the Mediterranean Sea. Diversity 12, 92 (2020).
Castellan, G., Angeletti, L., Taviani, M. & Montagna, P. The yellow coral Dendrophyllia cornigera in a warming ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00692 (2019).
Google Scholar
Corriero, G. et al. A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians. Sci. Rep. 9, 3601 (2019).
Google Scholar
Chimienti, G. Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea. Diversity 12, 176 (2020).
Gori, A. et al. Animal forests in deep coastal bottoms and continental shelf of the Mediterranean Sea. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–28 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-17001-5_5-2.
Google Scholar
Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean Coast. Front. Mar. Sci. 7, 1245 (2021).
Santín, A. et al. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea). Deep Sea Res. Part I 131, 75–86 (2018).
Martin, C. S. et al. Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci. Rep. 4, 5073 (2014).
Google Scholar
D. Basso, L. Babbini, A. A. Ramos-Esplá, M. Salomidi. in Rhodolith/Maërl Beds: A Global Perspective, Coastal Research Library, 281–298 (R. Riosmena-Rodríguez, W. Nelson, J. Aguirre, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-29315-8_11.
Foster, M. M., Amado Filho, G. M., Kamenos, N. A., Riosmena-Rodríguez, R. & Steller, D. L. Rhodoliths and rhodolith beds. Res. Discoveries Revolut. Sci. Through Scuba. 39, 143–155 (2013).
Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 150, 163–182 (1991).
Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44, 123–195 (2006).
Smith, T. B. et al. Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U. S. Virgin Islands. Coral Reefs 29, 289–308 (2010).
Google Scholar
Markager, S. & Sand-Jensen, K. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Prog. Ser. 88, 83–92 (1992).
Google Scholar
Runcie, J. W., Gurgel, C. F. D. & Mcdermid, K. J. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur. J. Phycol. 43, 377–388 (2008).
Google Scholar
Bindoff, N. L., et al. Chapter 5: Changing ocean, marine ecosystems, and dependent communities. Intergovernmental panel of climate change. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 447–587 (2019).
Tweedley, J. R., Warwick, R. M. & Potter, I. C. The contrasting ecology of temperate macrotidal and microtidal estuaries. In Oceanography and Marine Biology: An Annual Review (eds Hughes, R. N. et al.) 73–171 (CRC Press, 2016).
Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change. 8, 338–344 (2018).
Google Scholar
Chen, N., Krom, M. D., Wu, Y., Yu, D. & Hong, H. Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci. Total Environ. 628–629, 1108–1120 (2018).
Google Scholar
Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).
Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).
Google Scholar
Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshwat. Ecosyst. 28, 1153–1166 (2018).
Enrichetti, F. et al. Assessing the environmental status of temperate mesophotic reefs: A new, integrated methodological approach. Ecol. Ind. 102, 218–229 (2019).
Soares, M. O., Tavares, T. C. L. & Carneiro, P. B. M. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Diversity Distributions. 25, 255–268 (2019).
Mobley, C. D. & Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
Marty, J.-C. & Chiavérini, J. Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep Sea Res. Part II 49, 2017–2030 (2002).
Google Scholar
Morel, A. & André, J.-M. Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J. Geophys. Res. Oceans. 96, 12685–12698 (1991).
Google Scholar
Antoine, D., Morel, A. & André, J.-M. Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations. J. Geophys. Res. Oceans. 100, 16193–16209 (1995).
Google Scholar
Mayot, N., D’Ortenzio, F., Ribera d’Alcalà, M., Lavigne, H. & Claustre, H. Interannual variability of the Mediterranean trophic regimes from ocean color satellites. Biogeosciences 13, 1901–1917 (2016).
Google Scholar
S. Kahng, J. M. Copus, D. Wagner. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 185–206 (S. Rossi, L. Bramanti, A. Gori, C. Orejas, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_4.
Chimienti, G. et al. Effects of global warming on Mediterranean coral forests. Sci. Rep. 11, 20703 (2021).
Google Scholar
Lesser, M. P., Slattery, M. & Mobley, C. D. Incident light and morphology determine coral productivity along a shallow to mesophotic depth gradient. Ecol. Evol. 11, 13445–13454 (2021).
Google Scholar
Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
Danovaro, R. et al. Towards a marine strategy for the deep Mediterranean Sea: Analysis of current ecological status. Mar. Policy. 112, 103781 (2020).
Saulquin, B. et al. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 128, 224–233 (2013).
Google Scholar
Grinyó, J. et al. Soft corals assemblages in deep environments of the Menorca Channel (Western Mediterranean Sea). Progress Oceanogr. 188, 102435 (2020).
Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).
Google Scholar
Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).
Google Scholar
Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6, e18483 (2011).
Google Scholar
Georgian, S. E. et al. Habitat suitability modelling to predict the spatial distribution of cold-water coral communities affected by the Deepwater Horizon oil spill. J. Biogeogr. 47, 1455–1466 (2020).
R. C. Team, R: A language and environment for statistical computing (3. 5. 1)[Computer software]. R Foundation for Statistical Computing (2020).
Source: Ecology - nature.com