in

Drawing the borders of the mesophotic zone of the Mediterranean Sea using satellite data

  • Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the World’s Marine Ecosystems. Science 328, 1523–1528 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Biol. 22, 2665–2675 (2016).

    ADS 

    Google Scholar 

  • Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Sci. Anthropocene. https://doi.org/10.1525/elementa.203 (2017).

    Article 

    Google Scholar 

  • Leslie, H. M. A synthesis of marine conservation planning approaches. Conserv. Biol. 19, 1701–1713 (2005).

    Google Scholar 

  • Oppel, S. et al. Spatial scales of marine conservation management for breeding seabirds. Mar. Policy 98, 37–46 (2018).

    Google Scholar 

  • Manea, E., Bianchelli, S., Fanelli, E., Danovaro, R. & Gissi, E. Towards an ecosystem-based marine spatial planning in the deep Mediterranean Sea. Sci. Total Environ. 715, 136884 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Aylesworth, L., Phoonsawat, R., Suvanachai, P. & Vincent, A. C. J. Generating spatial data for marine conservation and management. Biodivers. Conserv. 26, 383–399 (2017).

    Google Scholar 

  • Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).

    Google Scholar 

  • James, N. P., Ginsburg, R. N. & Ginsburg, R. N. The Seaward Margin of Belize Barrier and Atoll Reefs: Morphology, Sedimentology, Organism Distribution, and Late Quaternary History (Blackwell Scientific, 1979).

    Google Scholar 

  • Ginsburg, R. N., Harris, P. M., Eberli, G. P. & Swart, P. K. The growth potential of a bypass margin, Great Bahama Bank. J. Sediment. Res. 61, 976–987 (1991).

    Google Scholar 

  • Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems. Coral Reefs of the World (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_1.

    Chapter 

    Google Scholar 

  • Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).

    Google Scholar 

  • Hinderstein, L. M. et al. Theme section on “Mesophotic coral ecosystems: Characterization, ecology, and management”. Coral Reefs 29, 247–251 (2010).

    ADS 

    Google Scholar 

  • J. A. Turner, D. A. Andradi-Brown, A. Gori, P. Bongaerts, H. L. Burdett, C. Ferrier-Pagès, C. R. Voolstra, D. K. Weinstein, T. C. L. Bridge, F. Costantini, E. Gress, J. Laverick, Y. Loya, G. Goodbody-Gringley, S. Rossi, M. L. Taylor, N. Viladrich, J. D. Voss, J. Williams, L. C. Woodall, G. Eyal. in Mesophotic Coral Ecosystems, Coral Reefs of the World, 989–1003 (Y. Loya, K. A. Puglise, T. C. L. Bridge, Eds). (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_52.

  • Baker, E. K., Puglise, K. A., Harris, P. T., United Nations Environment Programme, GRID-Arendal. Mesophotic Coral Ecosystems: A Lifeboat for Coral Reefs? (United Nations Environment Programme and GRID-Arendal, 2016).

    Google Scholar 

  • Lang, J. C. Biological Zonation at the Base of a Reef: Observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. Am. Scientist. 62, 272–281 (1974).

    ADS 

    Google Scholar 

  • J. K. Reed. Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. in Proceedings of the 5th International Coral Reef Symposium (1985), Vol. 6, 249–254.

  • Hanisak, M. D. & Blair, S. M. The deep-water macroalgal community of the East Florida continental shelf (USA). Helgolander Meeresunters. 42, 133–163 (1988).

    Google Scholar 

  • Aponte, N. E. & Ballantine, D. L. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res. Part I 48, 2185–2194 (2001).

    Google Scholar 

  • Fricke, H. W., Vareschi, E. & Schlichter, D. Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73, 371–381 (1987).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kahng, S. & Maragos, J. The deepest, zooxanthellate scleractinian corals in the world?. Coral Reefs 25, 254–254 (2006).

    ADS 

    Google Scholar 

  • Maragos, J. E. & Jokiel, P. L. Reef corals of Johnston Atoll: One of the world’s most isolated reefs. Coral Reefs 4, 141–150 (1986).

    ADS 

    Google Scholar 

  • Bridge, T. C. L. et al. Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar. Ecol. Progress Series 428, 63–75 (2011).

    ADS 

    Google Scholar 

  • Lesser, M. P. & Slattery, M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol. Invasions 13, 1855–1868 (2011).

    Google Scholar 

  • Slattery, M. & Lesser, M. P. The Bahamas and Cayman Islands. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_3.

    Chapter 

    Google Scholar 

  • Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J. Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41 (2011).

    Google Scholar 

  • Lesser, M. P., Slattery, M., Laverick, J. H., Macartney, K. J. & Bridge, T. C. Global community breaks at 60 m on mesophotic coral reefs. Glob. Ecol. Biogeogr. 28, 1403–1416 (2019).

    Google Scholar 

  • Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 10, e02839 (2019).

    Google Scholar 

  • Laverick, J. H., Green, T. K., Burdett, H. L., Newton, J. & Rogers, A. D. Depth alone is an inappropriate proxy for physiological change in the mesophotic coral Agaricia lamarcki. J. Mar. Biol. Assoc. UK 99, 1535–1546 (2019).

    Google Scholar 

  • Lesser, M. P., Mobley, C. D., Hedley, J. D. & Slattery, M. Incident light on mesophotic corals is constrained by reef topography and colony morphology. Mar. Ecol. Prog. Ser. 670, 49–60 (2021).

    ADS 

    Google Scholar 

  • Cerrano, C. et al. Temperate mesophotic ecosystems: Gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).

    Google Scholar 

  • Idan, T. et al. Shedding light on an East-Mediterranean mesophotic sponge ground community and the regional sponge fauna. Mediterr. Mar. Sci. 19, 84–106 (2018).

    Google Scholar 

  • Idan, T., Goren, L., Shefer, S., Brickner, I. & Ilan, M. Does depth matter? Reproduction pattern plasticity in two common sponge species found in both mesophotic and shallow waters. Front. Mar. Sci. 7, 1078 (2020).

    Google Scholar 

  • Enrichetti, F. et al. Megabenthic communities of the Ligurian deep continental shelf and shelf break (NW Mediterranean Sea). PLoS ONE 14, e0223949 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kahng, S. E. et al. Coral reefs of the world. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_42 (801–828).

    Chapter 

    Google Scholar 

  • D’Ortenzio, F. & Ribera d’Alcalà, M. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 6, 139–148 (2009).

    ADS 

    Google Scholar 

  • Christaki, U. et al. Microbial food webs and metabolic state across oligotrophic waters of the Mediterranean Sea during summer. Biogeosciences 8, 1839–1852 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).

    ADS 

    Google Scholar 

  • Basterretxea, G., Font-Muñoz, J. S., Salgado-Hernanz, P. M., Arrieta, J. & Hernández-Carrasco, I. Patterns of chlorophyll interannual variability in Mediterranean biogeographical regions. Remote Sens. Environ. 215, 7–17 (2018).

    ADS 

    Google Scholar 

  • Tanhua, T. et al. Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011. Earth Syst. Sci. Data 5, 289–294 (2013).

    ADS 

    Google Scholar 

  • Bethoux, J. P. Budgets of the Mediterranean Sea-their dependance on the local climate and on the characteristics of the Atlantic waters. Oceanol. Acta 2, 157–163 (1979).

    Google Scholar 

  • Azov, Y. Eastern Mediterranean—A marine desert?. Mar. Pollut. Bull. 23, 225–232 (1991).

    Google Scholar 

  • Pinardi, N., Zavatarelli, M., Arneri, E., Crise, A. & Ravaioli, M. The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. The Sea 14, 1243–1330 (2006).

    Google Scholar 

  • Rodolfo-Metalpa, R. et al. Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob. Change Biol. 21, 2238–2248 (2015).

    ADS 

    Google Scholar 

  • Bo, M. et al. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol. Cons. 171, 167–176 (2014).

    Google Scholar 

  • Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).

    Google Scholar 

  • L. Bramanti, M. C. Benedetti, R. Cupido, S. Cocito, C. Priori, F. Erra, M. Iannelli, G. Santangelo. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 529–548 (S. Rossi, L. Bramanti, A. Gori, C. Orejas Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_13.

  • Capdevila, P., Linares, C., Aspillaga, E., Riera, J. L. & Hereu, B. Effective dispersal and density-dependence in mesophotic macroalgal forests: Insights from the Mediterranean species Cystoseira zosteroides. PLoS ONE 13, e0191346 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Angeletti, L. et al. A brachiopod biotope associated with rocky bottoms at the shelf break in the central Mediterranean Sea: Geobiological traits and conservation aspects. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 402–411 (2020).

    Google Scholar 

  • Angeletti, L. & Taviani, M. Offshore Neopycnodonte Oyster Reefs in the Mediterranean Sea. Diversity 12, 92 (2020).

    Google Scholar 

  • Castellan, G., Angeletti, L., Taviani, M. & Montagna, P. The yellow coral Dendrophyllia cornigera in a warming ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00692 (2019).

    Article 

    Google Scholar 

  • Corriero, G. et al. A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians. Sci. Rep. 9, 3601 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chimienti, G. Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea. Diversity 12, 176 (2020).

    Google Scholar 

  • Gori, A. et al. Animal forests in deep coastal bottoms and continental shelf of the Mediterranean Sea. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–28 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-17001-5_5-2.

    Chapter 

    Google Scholar 

  • Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean Coast. Front. Mar. Sci. 7, 1245 (2021).

    Google Scholar 

  • Santín, A. et al. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea). Deep Sea Res. Part I 131, 75–86 (2018).

    Google Scholar 

  • Martin, C. S. et al. Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci. Rep. 4, 5073 (2014).

    CAS 

    Google Scholar 

  • D. Basso, L. Babbini, A. A. Ramos-Esplá, M. Salomidi. in Rhodolith/Maërl Beds: A Global Perspective, Coastal Research Library, 281–298 (R. Riosmena-Rodríguez, W. Nelson, J. Aguirre, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-29315-8_11.

  • Foster, M. M., Amado Filho, G. M., Kamenos, N. A., Riosmena-Rodríguez, R. & Steller, D. L. Rhodoliths and rhodolith beds. Res. Discoveries Revolut. Sci. Through Scuba. 39, 143–155 (2013).

    Google Scholar 

  • Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 150, 163–182 (1991).

    Google Scholar 

  • Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44, 123–195 (2006).

    Google Scholar 

  • Smith, T. B. et al. Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U. S. Virgin Islands. Coral Reefs 29, 289–308 (2010).

    ADS 

    Google Scholar 

  • Markager, S. & Sand-Jensen, K. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Prog. Ser. 88, 83–92 (1992).

    ADS 

    Google Scholar 

  • Runcie, J. W., Gurgel, C. F. D. & Mcdermid, K. J. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur. J. Phycol. 43, 377–388 (2008).

    CAS 

    Google Scholar 

  • Bindoff, N. L., et al. Chapter 5: Changing ocean, marine ecosystems, and dependent communities. Intergovernmental panel of climate change. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 447–587 (2019).

  • Tweedley, J. R., Warwick, R. M. & Potter, I. C. The contrasting ecology of temperate macrotidal and microtidal estuaries. In Oceanography and Marine Biology: An Annual Review (eds Hughes, R. N. et al.) 73–171 (CRC Press, 2016).

    Google Scholar 

  • Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change. 8, 338–344 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Chen, N., Krom, M. D., Wu, Y., Yu, D. & Hong, H. Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci. Total Environ. 628–629, 1108–1120 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).

    Google Scholar 

  • Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).

    ADS 

    Google Scholar 

  • Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshwat. Ecosyst. 28, 1153–1166 (2018).

    Google Scholar 

  • Enrichetti, F. et al. Assessing the environmental status of temperate mesophotic reefs: A new, integrated methodological approach. Ecol. Ind. 102, 218–229 (2019).

    Google Scholar 

  • Soares, M. O., Tavares, T. C. L. & Carneiro, P. B. M. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Diversity Distributions. 25, 255–268 (2019).

    Google Scholar 

  • Mobley, C. D. & Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

    Google Scholar 

  • Marty, J.-C. & Chiavérini, J. Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep Sea Res. Part II 49, 2017–2030 (2002).

    ADS 
    CAS 

    Google Scholar 

  • Morel, A. & André, J.-M. Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J. Geophys. Res. Oceans. 96, 12685–12698 (1991).

    ADS 

    Google Scholar 

  • Antoine, D., Morel, A. & André, J.-M. Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations. J. Geophys. Res. Oceans. 100, 16193–16209 (1995).

    ADS 

    Google Scholar 

  • Mayot, N., D’Ortenzio, F., Ribera d’Alcalà, M., Lavigne, H. & Claustre, H. Interannual variability of the Mediterranean trophic regimes from ocean color satellites. Biogeosciences 13, 1901–1917 (2016).

    ADS 
    CAS 

    Google Scholar 

  • S. Kahng, J. M. Copus, D. Wagner. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 185–206 (S. Rossi, L. Bramanti, A. Gori, C. Orejas, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_4.

  • Chimienti, G. et al. Effects of global warming on Mediterranean coral forests. Sci. Rep. 11, 20703 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lesser, M. P., Slattery, M. & Mobley, C. D. Incident light and morphology determine coral productivity along a shallow to mesophotic depth gradient. Ecol. Evol. 11, 13445–13454 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Google Scholar 

  • Danovaro, R. et al. Towards a marine strategy for the deep Mediterranean Sea: Analysis of current ecological status. Mar. Policy. 112, 103781 (2020).

    Google Scholar 

  • Saulquin, B. et al. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 128, 224–233 (2013).

    ADS 

    Google Scholar 

  • Grinyó, J. et al. Soft corals assemblages in deep environments of the Menorca Channel (Western Mediterranean Sea). Progress Oceanogr. 188, 102435 (2020).

    Google Scholar 

  • Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).

    ADS 

    Google Scholar 

  • Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).

    ADS 

    Google Scholar 

  • Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6, e18483 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Georgian, S. E. et al. Habitat suitability modelling to predict the spatial distribution of cold-water coral communities affected by the Deepwater Horizon oil spill. J. Biogeogr. 47, 1455–1466 (2020).

    Google Scholar 

  • R. C. Team, R: A language and environment for statistical computing (3. 5. 1)[Computer software]. R Foundation for Statistical Computing (2020).


  • Source: Ecology - nature.com

    Black Kites on a flyway between Western Siberia and the Indian Subcontinent

    Chemical reactions for the energy transition