in

Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas

  • Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).

    CAS 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Google Scholar 

  • Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    CAS 

    Google Scholar 

  • Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C. & Ban, N. C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 7, 9569 (2017).

    CAS 

    Google Scholar 

  • Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).

    Google Scholar 

  • Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).

    Google Scholar 

  • Ballantine, B. Fifty years on: lessons from marine reserves in New Zealand and principles for a worldwide network. Biol. Conserv. 176, 297–307 (2014).

    Google Scholar 

  • Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    Google Scholar 

  • Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).

    Google Scholar 

  • Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).

    CAS 

    Google Scholar 

  • McLeod, E. et al. Integrating climate and ocean change vulnerability into conservation planning. Coast. Manage. 40, 651–672 (2012).

    Google Scholar 

  • Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27, 198–215 (2021).

    Google Scholar 

  • Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).

    CAS 

    Google Scholar 

  • Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).

    Google Scholar 

  • Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS 

    Google Scholar 

  • Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    CAS 

    Google Scholar 

  • Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip inmarine species richness around the Equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    CAS 

    Google Scholar 

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Google Scholar 

  • Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Google Scholar 

  • Levin, N., Kark, S. & Danovaro, R. Adding the third dimension to marine conservation. Conserv. Lett. 11, e12408 (2018).

    Google Scholar 

  • O’Leary, B. C. & Roberts, C. M. Ecological connectivity across ocean depths: implications for protected area design. Glob. Ecol. Conserv. 15, e00431 (2018).

    Google Scholar 

  • Game, E. T. et al. Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).

    Google Scholar 

  • Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021); https://livereport.protectedplanet.net/

  • Wright, G. et al. Marine spatial planning in areas beyond national jurisdiction. Mar. Policy 132, 103384 (2021).

    Google Scholar 

  • Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020).

  • Dunn, D. C. et al. The Convention on Biological Diversity’s ecologically or biologically significant areas: origins, development, and current status. Mar. Policy 49, 137–145 (2014).

    Google Scholar 

  • Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).

    Google Scholar 

  • Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499–503 (2018).

    Google Scholar 

  • Arafeh-Dalmau, N. et al. Incorporating climate velocity into the design of climate-smart networks of marine protected areas. Methods Ecol. Evol. 12, 1969–1983 (2021).

    Google Scholar 

  • García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    Google Scholar 

  • Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS 

    Google Scholar 

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    CAS 

    Google Scholar 

  • Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).

    Google Scholar 

  • Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).

    Google Scholar 

  • Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2, 188–196 (2020).

    Google Scholar 

  • Ortuño Crespo, G. & Dunn, D. C. A review of the impacts of fisheries on open-ocean ecosystems. ICES J. Mar. Sci. 74, 2283–2297 (2017).

    Google Scholar 

  • Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 170039 (2017).

    Google Scholar 

  • Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0 (2021).

  • Visalli, M. E. et al. Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction. Mar. Policy 122, 103927 (2020).

    Google Scholar 

  • Dunn, D. C. et al. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Sci. Adv. 4, eaar4313 (2018).

    Google Scholar 

  • Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).

    Google Scholar 

  • Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).

    CAS 

    Google Scholar 

  • Venegas-Li, R., Levin, N., Possingham, H. & Kark, S. 3D spatial conservation prioritisation: accounting for depth in marine environments. Methods Ecol. Evol. 9, 773–784 (2018).

    Google Scholar 

  • Menini, E. & Van Dover, C. L. An atlas of protected hydrothermal vents. Mar. Policy 108, 103654 (2019).

    Google Scholar 

  • Crespo, G. O. et al. High-seas fish biodiversity is slipping through the governance net. Nat. Ecol. Evol. 3, 1273–1276 (2019).

    Google Scholar 

  • Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).

    CAS 

    Google Scholar 

  • Barton, A. D. et al. The biogeography of marine plankton traits. Ecol. Lett. 16, 522–534 (2013).

    Google Scholar 

  • Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).

    Google Scholar 

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    CAS 

    Google Scholar 

  • Daigle, R. M. et al. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 11, 570–579 (2020).

    Google Scholar 

  • Fredston-Hermann, A., Gaines, S. D. & Halpern, B. S. Biogeographic constraints to marine conservation in a changing climate. Ann. N. Y. Acad. Sci. 1429, 5–17 (2018).

    Google Scholar 

  • Cashion, T. et al. Shifting seas, shifting boundaries: dynamic marine protected area designs for a changing climate. PLoS ONE 15, e0241771 (2020).

    CAS 

    Google Scholar 

  • Ortuño Crespo, G. et al. Beyond static spatial management: scientific and legal considerations for dynamic management in the high seas. Mar. Policy 122, 104102 (2020).

    Google Scholar 

  • Levin, L. A., Amon, D. J. & Lily, H. Challenges to the sustainability of deep-seabed mining. Nat. Sustain. 3, 784–794 (2020).

    Google Scholar 

  • Levin, L. A. et al. Climate change considerations are fundamental to management of deep-sea resource extraction. Glob. Change Biol. 26, 4664–4678 (2020).

    Google Scholar 

  • Morato, T., Watson, R., Pitcher, T. J. & Pauly, D. Fishing down the deep. Fish Fish. 7, 24–34 (2006).

    Google Scholar 

  • Rogers, A. D. & Gianni, M. Implementation of UNGA Resolutions 61/105 and 64/72 in the Management of Deep-Sea Fisheries on the High Seas (DIANE, 2011).

  • Bailey, D. M., Collins, M. A., Gordon, J. D. M., Zuur, A. F. & Priede, I. G. Long-term changes in deep-water fish populations in the Northeast Atlantic: a deeper reaching effect of fisheries? Proc. R. Soc. B 276, 1965–1969 (2009).

    CAS 

    Google Scholar 

  • NOAA National Geophysical Data Center ETOPO1 1 Arc-Minute Global Relief Model (NOAA National Centers for Environmental Information, 2009).

  • O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Google Scholar 

  • Vrac, M., Stein, M. L., Hayhoe, K. & Liang, X.-Z. A general method for validating statistical downscaling methods under future climate change. Geophys. Res. 34, L18701 (2007).

    Google Scholar 

  • Rogers, A. D. Environmental change in the deep ocean. Annu. Rev. Environ. Resour. 40, 1–38 (2015).

    Google Scholar 

  • Sayre, R. G. et al. A three-dimensional mapping of the ocean based on environmental data. Oceanography 30, 90–103 (2017).

    Google Scholar 

  • Schulzweida, U. CDO User Guide (Max Planck Institute for Meteorology, 2019).

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • Mumby, P. J. et al. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14, 132–140 (2011).

    Google Scholar 

  • Magris, R. A., Heron, S. F. & Pressey, R. L. Conservation planning for coral reefs accounting for climate warming disturbances. PLoS ONE 10, e0140828 (2015).

    Google Scholar 

  • Chollett, I., Enríquez, S. & Mumby, P. J. Redefining thermal regimes to design reserves for coral reefs in the face of climate change. PLoS ONE 9, e110634 (2014).

    Google Scholar 

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    CAS 

    Google Scholar 

  • García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).

    Google Scholar 

  • Iwamura, T., Wilson, K. A., Venter, O. & Possingham, H. P. A climatic stability approach to prioritizing global conservation investments. PLoS ONE 5, e15103 (2010).

    CAS 

    Google Scholar 

  • Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).

    Google Scholar 

  • Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Google Scholar 

  • Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).

    Google Scholar 

  • Ball, I. R., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) Ch. 14 (Oxford Univ. Press, 2009).

  • Asaad, I., Lundquist, C. J., Erdmann, M. V. & Costello, M. J. Ecological criteria to identify areas for biodiversity conservation. Biol. Conserv. 213, 309–316 (2017).

    Google Scholar 

  • Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (2019).

  • Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).

    Google Scholar 

  • Froese, R. & Pauly, D. FishBase (2021).

  • Palomares, M. L. D. & Pauly, D. SeaLifeBase (2021).

  • Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl Acad. Sci. USA 107, 9707–9711 (2010).

    CAS 

    Google Scholar 

  • Rowden, A. A. et al. A test of the seamount oasis hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31, 95–106 (2010).

    Google Scholar 

  • Devred, E., Sathyendranath, S. & Platt, T. Delineation of ecological provinces using ocean colour radiometry. Mar. Ecol. Prog. Ser. 346, 1–13 (2007).

    CAS 

    Google Scholar 

  • Oliver, M. J. & Irwin, A. J. Objective global ocean biogeographic provinces. Geophys. Res. Lett. 35, L15601 (2008).

    Google Scholar 

  • Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).

    Google Scholar 

  • Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. 1 126, 85–102 (2017).

    Google Scholar 

  • Global Open Oceans and Deep Seabed (GOODS)—Biogeographic Classification (UNESCO, 2009).

  • Ban, N. C. & Klein, C. J. Spatial socioeconomic data as a cost in systematic marine conservation planning. Conserv. Lett. 2, 206–215 (2009).

    Google Scholar 

  • Tai, T. C., Cashion, T., Lam, V. W. Y., Swartz, W. & Sumaila, U. R. Ex-vessel fish price database: disaggregating prices for low-priced species from reduction fisheries. Front. Mar. Sci. 4, 363 (2017).

    Google Scholar 

  • Gurobi Optimizer Reference Manual (Gurobi Optimization, 2020).

  • Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).

    Google Scholar 

  • IUCN Red List of Threatened Species (IUCN, 2020); https://www.iucnredlist.org/en

  • Chamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0 (2020).

  • McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. Med. 22, 276–282 (2012).

    Google Scholar 

  • Brito-Morales, I. Towards climate-smart, 3-D protected areas for biodiversity conservation in the high seas (v2.0). Zenodo https://doi.org/10.5281/zenodo.5912047 (2022).


  • Source: Ecology - nature.com

    Black Kites on a flyway between Western Siberia and the Indian Subcontinent

    Chemical reactions for the energy transition