in

Development and validation of an eDNA protocol for monitoring endemic Asian spiny frogs in the Himalayan region of Pakistan

  • Lindenmayer, D. et al. A checklist of attributes for effective monitoring of threatened species and threatened ecosystems. J. Environ. Manage. 262, 110312 (2020).

    PubMed 

    Google Scholar 

  • Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    PubMed 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2019-3. http://www.iucnredlist.org (2021).

  • Adams, M. J. et al. Trends in amphibian occupancy in the United States. PLoS ONE 8, e64347 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corn, P. S. Climate change and amphibians. Anim. Biodivers. Conserv. 28, 59–67 (2005).

    Google Scholar 

  • Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Baldwin, R. F. & deMaynadier, P. G. Assessing threats to pool-breeding amphibian habitat in an urbanizing landscape. Biol. Conserv. 142, 1628–1638 (2009).

  • Borzée, A., Kyong, C. N., Kil, H. K. & Jang, Y. Impact of water quality on the occurrence of two endangered Korean anurans: Dryophytes suweonensis and Pelophylax chosenicus. Herpetologica 74, 1–7 (2018).

    Google Scholar 

  • Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Caro, T., Rowe, Z., Berger, J., Wholey, P. & Dobson, A. An inconvenient misconception: climate change is not the principal driver of biodiversity loss. Conserv. Lett. e12868 (2022).

  • Daszak, P. et al. Emerging infectious diseases and amphibian population declines. Emerg. Infect. 5, 735–748 (1999).

    CAS 

    Google Scholar 

  • Fellers, G., Green, D. E. & Longcore, J. Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa). Copeia 2001, 945–953

  • Blaustein, A. R. et al. Effects of ultraviolet radiation on amphibians: field experiments. Am. Zool. 38, 799–812 (1999).

    Google Scholar 

  • Langhelle, A., Lindell, M. J. & Nyström, P. Effects of ultraviolet radiation on amphibian embryonic and larval development. J. Herpetol. 33, 449–456 (1999).

    Google Scholar 

  • Beebee, T. J. C. Amphibians breeding and climate. Nature 374, 219–220 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Donnelly, M. A. & Crump, M. L. Potential effects of climate change on two neotropical amphibian assemblages. In Potential Impacts of Climate Change on Tropical Forest Ecosystems (ed. Markham, A.) 401–421 (Springer Netherlands, 1998).

  • Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003).

    Google Scholar 

  • Fisher, R. N. & Shaffer, H. B. The decline of amphibians in California’s Great Central Valley. Conserv. Biol. 10, 1387–1397 (1996).

    Google Scholar 

  • Sparling, D. W., Donald, W., Linder, G. & Bishop, C. A. Ecotoxicology of Amphibians and Reptiles. (SETAC Press, 2000).

  • Rouse, M. J. & Daellenbach, U. S. Rethinking research methods for the resource-based perspective: isolating sources of sustainable competitive advantage. Strat. Manag. J. 20, 487–494 (1999).

    Google Scholar 

  • Bridges, C. M. & Boone, M. D. The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biol. Conserv. 113, 49–54 (2003).

    Google Scholar 

  • Schmeller, D. S. et al. National responsibilities in European species conservation: a methodological review. Conserv. Biol. 22, 593–601 (2008).

    PubMed 

    Google Scholar 

  • Anderson, S. Area and endemism. Q. Rev. Biol. 69, 451–471 (1994).

    Google Scholar 

  • Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).

    Google Scholar 

  • Gorman, C. E., Potts, B. M., Schweitzer, J. A. & Bailey, J. K. Shifts in species interactions due to the evolution of functional differences between endemics and non-endemics: an endemic syndrome hypothesis. PLoS ONE 9, e111190 (2014).

  • Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    PubMed 

    Google Scholar 

  • Fontaine, B. et al. The European Union’s 2010 target: putting rare species in focus. Biol. Conserv. 139, 167–185 (2007).

    Google Scholar 

  • Saeed, M. et al. Rise in temperature causes decreased fitness and higher extinction risks in endemic frogs at high altitude forested wetlands in northern Pakistan. J. Therm. Biol. 95, 102809 (2021).

  • McDonald, L. L. Sampling rare populations. In Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson W. L.) 11–42 (Island Press, 2004).

  • Dodd Jr. K. Monitoring Amphibians in Great Smoky Mountains National Park (USGS Survey Circular, 2003).

  • Qu, C. & Stewart, K. A. Evaluating monitoring options for conservation : traditional and environmental DNA tools for a critically endangered mammal. Sci. Nat. 106, 9 (2019).

    Google Scholar 

  • Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    PubMed 

    Google Scholar 

  • Schmidt, B. R., Kery, M., Ursenbacher, S., Hyman, O. J. & Collins, J. P. Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4, 646–653 (2013).

    Google Scholar 

  • Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).

    PubMed 

    Google Scholar 

  • Kéry, M. & Schmidt, B. R. Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9, 207–216 (2008).

    Google Scholar 

  • Mackenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).

    Google Scholar 

  • Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005).

    Google Scholar 

  • Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Darling, J. A. & Mahon, A. R. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111, 978–988 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Goldberg, C. S., Pilliod, D. S., Arkle, R. S. & Waits, L. P. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS ONE 6, e22746 (2011).

  • Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2017).

  • Agersnap, S. et al. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples. PLoS ONE 12, e0179261 (2017).

  • Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).

    CAS 

    Google Scholar 

  • Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    PubMed 

    Google Scholar 

  • Sigsgaard, E. E., Carl, H., Møller, P. R. & Thomsen, P. F. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 183, 46–52 (2015).

    Google Scholar 

  • Bedwell, M. E., Hopkins, K. V. S., Dillingham, C. & Goldberg, C. S. Evaluating Sierra Nevada yellow-legged frog distribution using environmental DNA. J. Wildl. Mangaement 85, 945–952 (2021).

    Google Scholar 

  • Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brozio, S. et al. Development and application of an eDNA method to detect the critically endangered Trinidad golden tree frog (Phytotriades auratus) in bromeliad phytotelmata. PLoS ONE 12, e0170619 (2017).

  • Pellet, J. & Schmidt, B. R. Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 27–35 (2005).

    Google Scholar 

  • Weir, L. A., Royle, J. A., Nanjappa, P. & Jung, R. E. Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland. J. Herpetol. 39, 627–639 (2005).

    Google Scholar 

  • Fiske, I. J. & Chandler, R. B. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).

    Google Scholar 

  • Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).

    Google Scholar 

  • Holland, M. M. & Parsons, T. J. Mitochondrial DNA sequence analysis – validation and use for forensic casework. Forensic Sci. Rev. 11, 21–50 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Waits, L. P. & Paetkau, D. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manage. 69, 1419–1433 (2006).

    Google Scholar 

  • Shokralla, S. et al. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol. Ecol. Resour. 14, 892–901 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mills, L. S., Pilgrim, K. L., Schwartz, M. K. & McKelvey, K. Identifying lynx and other North American felids based on mtDNA analysis. Conserv. Genet. 1, 285–288 (2000).

    CAS 

    Google Scholar 

  • Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).

    CAS 

    Google Scholar 

  • Kim, P., Kim, D., Yoon, T. J. & Shin, S. Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Mar. Environ. Res. 139, 1–10 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Dejean, T. et al. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398 (2011).

  • Xia, Z. et al. Early detection of a highly invasive bivalve based on environmental DNA (eDNA). Biol. Invasions 20, 437–447 (2018).

    Google Scholar 

  • Torresdal, J. D., Farrell, A. D. & Goldberg, C. S. Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. PLoS ONE 12, e0168787 (2017).

  • Biggs, J. et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19–28 (2015).

    Google Scholar 

  • Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).

    CAS 

    Google Scholar 

  • Smith, D. H. V., Jones, B., Randall, L. & Prescott, D. R. C. Difference in detection and occupancy between two anurans: the importance of species-specific monitoring. Herpetol. Conserv. Biol. 9, 267–277 (2014).

    Google Scholar 

  • Bayley, P. B. & Peterson, J. T. An approach to estimate probability of presence and richness of fish species. Trans. Am. Fish. Soc. 130, 620–633 (2004).

    Google Scholar 

  • Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).

    Google Scholar 

  • Scott, Jr., N. J. & Woodward, B. D. Surveys at breeding sites. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds. Heyer, W. R., Donnelly, M. A., McDiarmid, R. W., Hayek, L. C., & Foster, M. S.) 118–125 (Smithsonian Institution Press, 1994).

  • Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).

    Google Scholar 

  • Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J. & Waits, L. P. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw. Sci. 32, 792–800 (2013).

    Google Scholar 

  • Mahon, A. R. et al. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS ONE 8, e58316 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, M. S. Amphibians and Reptiles of Pakistan (Krieger Publishing Company, 2006).

  • Ruppert, K. M., Davis, D. R., Rahman, M. S. & Kline, R. J. Development and assessment of an environmental DNA (eDNA) assay for a cryptic Siren (Amphibia: Sirenidae). Environ. Adv. 7, 100163 (2022).

    Google Scholar 

  • Hobbs, J., Round, J. M., Allison, M. J. & Helbing, C. C. Expansion of the known distribution of the coastal tailed frog, Ascaphus truei, in British Columbia, Canada, using robust eDNA detection methods. PLoS ONE 14, e0213849 (2019).

  • Barata, I. M., Griffiths, R. A., Fogell, D. J. & Buxton, A. S. Comparison of eDNA and visual surveys for rare and cryptic bromeliad-dwelling frogs. Herpetol. J. 31, 1–9 (2021).

    Google Scholar 

  • Ahmed, W. et al. Site occupancy of two endemic stream frogs in different forest types in Pakistan. Herpetol. Conserv. Biol. 15, 506–511 (2020).

    Google Scholar 

  • Richmond, O. M. W., Hines, J. E. & Beissinger, S. R. Two-species occupancy models: a new parameterization applied to co-occurrence of secretive rails. Ecol. Appl. 20, 2036–2046 (2010).

    PubMed 

    Google Scholar 

  • Shea, C. P., Eaton, M. J. & MacKenzie, D. I. Implementation of an occupancy-based monitoring protocol for a widespread and cryptic species, the New England cottontail (Sylvilagus transitionalis). Wildl. Res. 46, 222–235 (2019).

    Google Scholar 

  • Rota, C. T. et al. A multispecies occupancy model for two or more interacting species. Methods Ecol. Evol. 7, 1164–1173 (2016).

    Google Scholar 

  • Ohler, A. & Dubois, A. Phylogenetic relationships and generic taxonomy of the tribe Paini (Amphibia, Anura, Ranidae, Dicroglossinae). Zoosystema 28, 769–784 (2006).

    Google Scholar 

  • Jiang, J. et al. Phylogenetic relationships of the tribe Paini (Amphibia, Anura, Ranidae) based on partial sequences of mitochondrial 12s and 16s rRNA genes. Zool. Res. 362, 353–362 (2005).

    Google Scholar 

  • Rais, M. et al. A note on recapture of Nanorana vicina (Anura: Amphibia) from Murree, Pakistan. J. Anim. Plant Sci. 24, 455–458 (2014).

    Google Scholar 

  • Siddiqui, M. F., Ahmed, M., Khan, N. & Khan, I. A. A quantitative description of moist temperate conifer forests of Himalayan region of Pakistan and Azad Kashmir. Int. J. Biotechnol. 7, 175–185 (2010).

    Google Scholar 

  • Beck, H. E. et al. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

  • Sheikh, M. I. & Hafeez, S. M. Forest and Forestry in Pakistan (A-one Publishers, 2001).

  • Lodhi, A. Conservation of leopards in Ayubia National Park, Pakistan (MS Thesis) (University of Montana, 2007).

  • Palumbi, S. R. Nucleic acids II: the polymerase chain reaction. In Molecular Systematics, 2nd Edition (eds. Hillis, D. M. et al.) 205–247 (Sinauer, 1996).

  • Vences, M., Thomas, M., Van Der Meijden, A., Chiari, Y. & Vieites, D. R. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front. Zool. 2, 5 (2005).

  • Pounds, J. A. & Crump, M. L. Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv. Biol. 8, 72–85 (1994).

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/ (2021).

  • Hutchinson, R. A., Valente, J. J., Emerson, S. C., Betts, M. G. & Dietterich, T. G. Penalized likelihood methods improve parameter estimates in occupancy models. Methods Ecol. Evol. 6, 949–959 (2015).

    Google Scholar 

  • Clipp, H. L., Evans, A. L., Kessinger, B. E., Kellner, K., & Rota, C. T. A penalized likelihood for multispecies occupancy models improves predictions of species interactions. Ecology 102, e03520 (2021).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Black Kites on a flyway between Western Siberia and the Indian Subcontinent

    Chemical reactions for the energy transition