in

Resident birds are more behaviourally plastic than migrants

  • Hall, M. J., Burns, A. L., Martin, J. M. & Hochuli, D. F. Flight initiation distance changes across landscapes and habitats in a successful urban coloniser. Urban Ecosyst. https://doi.org/10.1007/s11252-020-00969-5 (2020).

    Article 

    Google Scholar 

  • Møller, A. P., Samia, D. S. M., Weston, M. A., Guay, P. J. & Blumstein, D. T. Flight initiation distances in relation to sexual dichromatism and body size in birds from three continents. Biol. J. Linn. Soc. 117, 823–831 (2016).

    Google Scholar 

  • Morelli, F. et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 9, 6096–6104 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Samia, D. S. M. et al. Rural-urban differences in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 5, 66 (2017).

    ADS 

    Google Scholar 

  • Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).

    Google Scholar 

  • McFarland, D. Oxford companion to animal behavior. (Oxford University Press, 1987).

  • Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).

    Google Scholar 

  • Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60–67 (1985).

    ADS 
    PubMed 

    Google Scholar 

  • Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).

    Google Scholar 

  • Lockwood, R., Swaddle, J. P. & Rayner, J. M. V. Avian Wingtip Shape Reconsidered: Wingtip Shape Indices and Morphological Adaptations to Migration. J. Avian Biol. 29, 273–292 (1998).

    Google Scholar 

  • Møller, A. P. Birds. in Escaping from predators: An integrative view of escape decisions and refuge use (eds. Cooper, W. E. J. & Blumstein, D. T.) 88–112 (Cambridge University Press, 2015).

  • Møller, A. P. Flight distance of urban birds, predation and selection for urban life. Behav. Ecol. Sociobiol. 63, 63–75 (2008).

    Google Scholar 

  • Fernández-Juricic, E. et al. Relationships of anti-predator escape and post-escape responses with body mass and morphology: a comparative avian study. Evol. Ecol. Res. 8, 731–752 (2006).

    Google Scholar 

  • Weston, M. A., Mcleod, E. M., Blumstein, D. T. & Guay, P. J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu 112, 269–286 (2012).

    Google Scholar 

  • Hemmingsen, A. The relation of shyness (flushing distance) to body size. Spolia Zool Musei Hauniensis 11, 74–76 (1951).

    Google Scholar 

  • Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manage. 67, 852–857 (2013).

    Google Scholar 

  • Glover, H. K., Weston, M. A., Maguire, G. S., Miller, K. K. & Christie, B. A. Towards ecologically meaningful and socially acceptable buffers: Response distances of shorebirds in Victoria, Australia, to human disturbance. Landsc. Urban Plan. 103, 326–334 (2011).

    Google Scholar 

  • Geist, C., Liao, J., Libby, S. & Blumstein, D. T. Does intruder group size and orientation affect flight initiation distance in birds?. Anim. Biodivers. Conserv. 28, 69–73 (2001).

    Google Scholar 

  • Mikula, P. Pedestrian density influences flight distances of urban birds. Ardea 102, 53–60 (2014).

    Google Scholar 

  • Piratelli, A. J., Favoretto, G. R. & de Almeida Maximiano, M. F. Factors affecting escape distance in birds. Zoologia 32, 438–444 (2015).

  • Burger, J. & Gochfeld, M. Human activity influence and diurnal and nocturnal foraging of Sanderlings (Calidris alba). Condor 93, 259–265 (1991).

    Google Scholar 

  • Møller, A. P. & Garamszegi, L. Z. Between individual variation in risk-taking behavior and its life history consequences. Behav. Ecol. 23, 843–853 (2012).

    Google Scholar 

  • Ferguson, S. M., Gilson, L. N. & Bateman, P. W. Look at the time: diel variation in the flight initiation distance of a nectarivorous bird. Behav. Ecol. Sociobiol. 73, 147 (2019).

    Google Scholar 

  • Garamszegi, L. Z. & Møller, A. P. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol. Lett. 20, 599–608 (2017).

    PubMed 

    Google Scholar 

  • Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Dufour, P. et al. Reconstructing the geographic and climatic origins of long-distance bird migrations. J. Biogeogr. 47, 155–166 (2020).

    Google Scholar 

  • Sol, D. et al. Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonnet-Lebrun, A. S., Somveille, M., Rodrigues, A. S. L. & Manica, A. Exploring intraspecific variation in migratory destinations to investigate the drivers of migration. Oikos 130, 187–196 (2021).

    Google Scholar 

  • Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons?. J. Biogeogr. 45, 1459–1468 (2018).

    Google Scholar 

  • Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).

    Google Scholar 

  • Cooper, W. E. J. & Blumstein, D. T. Escape behavior: importance, scope, and variables. in Escaping from predators: An integrative view of escape decisions (eds. Cooper, W. E. J. & Blumstein, D. T.) 3–14 (Cambridge University Press, 2015). https://doi.org/10.1017/CBO9781107447189.002.

  • Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).

    Google Scholar 

  • Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190012 (2019).

    Google Scholar 

  • Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Google Scholar 

  • Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120341–22012034 (2013).

    Google Scholar 

  • Machado, J. P., Antunes, A., Borges, R., Gomes, C. & Rocha, A. P. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics https://doi.org/10.1093/bioinformatics/bty800 (2018).

    Article 

    Google Scholar 

  • Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS 

    Google Scholar 

  • Revell, L. J. & Chamberlain, S. A. Rphylip: An R interface for PHYLIP R package. (2014).

  • Blomberg, S. P. & Garland, T. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910 (2003).

    Google Scholar 

  • Keck, F., Rimet, F., Bouchez, A. & Franc, A. Phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Google Scholar 

  • Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990).

    Google Scholar 

  • Blomberg, S. P., Garland, T. J. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution (N. Y.) 57, 717–745 (2003).

    Google Scholar 

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • McCullagh, P. & Nelder, J. A. Generalized Linear Models. (Chapman and Hall, 1989).

  • Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-140. 1–117 (2019).

  • Nakazawa, M. ‘fmsb’ Functions for Medical Statistics Book with some Demographic Data – R package version 0.6.1. (2017).

  • R Development Core Team. R: A language and environment for statistical computing. (2021).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2.


  • Source: Ecology - nature.com

    Ocean vital signs

    Privately protected areas increase global protected area coverage and connectivity