in

Evaluation of resource and environmental carrying capacity in rare earth mining areas in China

  • Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10(04), 68–86 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, K. F., Hu, J. L., Zhang, Y. B. & Xue, D. F. Current R&D status and future trends of rare earth crystal materials. Inorgan. Chem. Ind. 52, 11–16 (2020).

    ADS 

    Google Scholar 

  • Hong, G. Y. Research progress of rare earth luminescent materials. J. Synth. Cryst. 44, 2641–2651 (2015).

    CAS 

    Google Scholar 

  • Hu, J. L. & Xue, D. F. Research progress on the characteristics of rare earth ions and rare earth functional materials. Chin. J. Appl. Chem. 37, 245–255 (2020).

    CAS 

    Google Scholar 

  • Ji, L. Q., Chen, M. X., Gu, H., Zhao, J. H. & Yang, X. Actuality of light rare earth resources and application in field of new energy vehicles. J. Chin. Soc. Rare Earths 38, 129–138 (2020).

    Google Scholar 

  • Liu, L. S. et al. Progress in nanocrystalline materials of rare earths. Chin. Rare Earths 33, 84–89 (2012).

    ADS 

    Google Scholar 

  • Chen, Z. H. Global rare earth resources and scenarios of future rare earth industry. J. Rare Earths 29, 1–6 (2011).

    Article 

    Google Scholar 

  • Mineral Commodity Summaries: 2021. Government Printing Office (2021)

  • Yang, Z. F., Ma, Y. & Wang, Y. Mining (Metallurgical Industry Press, 2018).

    Google Scholar 

  • Liu, H. Y. et al. Geochemical signatures of rare earth elements and yttrium exploited by acid solution mining around an ion-adsorption type deposit: Role of source control and potential for recovery. Sci. Total Environ. 804, 150241–150241 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Su, J. et al. Recovery of thorium and rare earths from leachate of ion-absorbed rare earth radioactive residues with N1923 and Cyanex 572. J. Rare Earths 39(10), 1273–1281 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: A case study of Bayan Obo in northwestern China. Hum. Ecol. Risk Assess. Int. J. 27(5), 1276–1295 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jin, Y., Jin, X. & Chen, L. I. Applying supporting-pressuring coupling curve to the evaluation of urban land carrying capacity: The case study of 32 cities in Zhejiang province. Geogr Res 37(6), 1087–1099 (2018).

    Google Scholar 

  • Hadwen, S. & Palmer, L.J. Reindeer in Alaska. US Department of Agriculture (1922).

  • Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4(1), 1–23 (1973).

    Article 

    Google Scholar 

  • Chapman, E. J. & Carrie, J. B. The flexible application of carrying capacity in ecology. Glob. Ecol. Conserv. 13, e00365 (2018).

    Article 

    Google Scholar 

  • Arrow, K. et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 15(2), 91–95 (1995).

    Article 

    Google Scholar 

  • Zhu, M. C. et al. A load-carrier perspective examination on the change of ecological environment carrying capacity during urbanization process in China. Sci. Total Environ. 714, 136843 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, F. et al. Evaluation of resources and environmental carrying capacity of 36 large cities in China based on a support-pressure coupling mechanism. Sci. Total Environ. 688, 838–854 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wei, X., Shen, L., Liu, Z., Luo, L. & Chen, Y. Comparative analysis on the evolution of ecological carrying capacity between provinces during urbanization process in China. Ecol. Indic. 112, 106179 (2020).

    Article 

    Google Scholar 

  • Wu, X. & Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol. Indic. 113, 106243 (2020).

    Article 

    Google Scholar 

  • Wang, J. Y. et al. A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecol. Indic. 89, 348–355 (2018).

    Article 

    Google Scholar 

  • Jia, Z., Cai, Y., Chen, Y. & Zeng, W. Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resour. Conserv. Recycl. 134, 282–293 (2018).

    Article 

    Google Scholar 

  • Ma, X. A., Bai, Z. K. & Feng, L. R. Evaluation of the eco-environment quality and resources utilization in opencast coal mine area-A case study of Antaibao Open cast Mine of Pingshuo Shanxi Province. Chin. J. Eco-Agric. 15(5), 197–201 (2007).

    Google Scholar 

  • Zhang, Z. Q. Study on ecological capacity and environment evaluation of Qingyang, GanSu. Lanzhou: GanSu Agricultural University Doctoral Thesis (in Chinese) (2010).

  • Li, Y. G. et al. Research on the development of the ecological protection of the Qilian Mountains based on ecological redline. Acta Ecol. Sin. 39(7), 2343–2352 (2019).

    Google Scholar 

  • Wang, Y., Hong, X. Y. & Lv, D. Analysis on dynamic ecological security and development capacity of 2005–2009 in Qinhuangdao, China. Proc. Environ. Sci. 10, 607–612 (2011).

    Article 

    Google Scholar 

  • Zeng, C. et al. An integrated approach for assessing aquatic ecological carrying capacity: A case study of Wujin District in the Tai Lake Basin, China. Int. J. Environ. Res. Public Health 8(1), 264–280 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhong, Y. X. & Lu, Y. Q. The coupling relationship between population and economic in Poyang Lake ecological economic zone. Econ. Geogr 31(2), 195–200 (2011).

    MathSciNet 

    Google Scholar 

  • Wang, D., Shi, Y. & Wan, K. Integrated evaluation of the carrying capacities of mineral resource-based cities considering synergy between subsystems. Ecol. Indic. 108, 105701 (2020).

    Article 

    Google Scholar 

  • Zhang, Y., Wang, Q., Wang, Z., Yang, Y. & Li, J. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci. Total Environ. 698, 134304 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, M., Liu, Y., Wu, J. & Wang, T. Index system of urban resource and environment carrying capacity based on ecological civilization. Environ. Impact Assess Rev. 68, 90–97 (2018).

    Article 

    Google Scholar 

  • Feng, Z. M. et al. The progress of resources and environment carrying capacity: From single-factor carrying capacity research to comprehensive research. J. Resour. Ecol. 9, 125–134 (2018).

    Google Scholar 

  • Xiao, W. et al. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: A case study of Shendong Coalfield, China. Ecol. Indic. 109, 105843 (2020).

    Article 

    Google Scholar 

  • Zhang, Y., Shang, J. C. & Yu, X. Y. Study on the coupling mechanism of urban economy and environment. Acta Sci. Circum. 23(1), 107–112 (2003).

    ADS 
    CAS 

    Google Scholar 

  • China County Statistical Yearbook. National Bureau of Statistics, Department of Rural Social and Economic Survey (in Chinese) (2013).

  • Baotou Statistical Yearbook. Baotou City Bureau of Statistics (in Chinese) (2019).

  • Jiangxi Statistical Yearbook. Jiangxi Bureau of Statistics (in Chinese) (2014).

  • Jining Statistical Yearbook. Jining Bureau of Statistics (in Chinese) (2019).

  • 402009 Liangshan Yearbook Atlas. Liangshan Yi Autonomous Prefecture People’s Government (in Chinese) (2010).

  • Liao, X. P. Meizhou yearbook. Yearb. Inf. Res. 2, 53 (1999).

    Google Scholar 

  • Chongzuo yearbook. Chongzuo local history compilation committee (in Chinese) (2019).

  • Ma, G. X. et al. Assessment of ecological and environmental costs of rare earth resources development in China from 2001–2013. Journal of Natural Resources (in Chinese) (2017).

  • Bai, L. N. et al. The impact of radioactivity on the surrounding environment in the production of rare earths and steel at the Bayan Obo mine. Rare Earths 7577 (in Chinese) (2004).

  • Li, X. Y. Monitoring and analysis of the radioactive environmental impact of the mining project of Baogang Bayan Obo Iron Mine (West Mine) (in Chinese) (2016).

  • Shi, H. R. & Zhao, R. Y. Comparison of radioactivity levels of rare earth products from different origins. China Radiat. Health 1, 30 (2000).

    Google Scholar 

  • Liu, H. P., Zhong, M. L. & Hu, Y. M. Survey of rare earth natural radionuclides in Ganan, Jiangxi Province. Radiat Prot 34(4), 255–257 (2014).

    Google Scholar 

  • Xiao, X. L. Investigation and Treatment of Radioactive Environment in Rare Earth Mining Area of Mianning (Southwest Jiaotong University, 2013).

    Google Scholar 

  • Min, D., Xu, Z., Peng, L., Zhu, Y. & Xu, X. Comprehensive evaluation of water resources carrying capacity of jining city. Energy Proc. 5(5), 1654–1659 (2011).

    Article 

    Google Scholar 

  • Yin, J. N. & Song, X. A review of major rare earth element and yttrium deposits in China. Aust. J. Earth Sci. 2, 1–25 (2021).

    Google Scholar 

  • Chi, R., Li, Z. J., Peng, C., Zhu, G. C. & Xu, S. M. Partitioning properties of rare earth ores in China. Rare Met. 24, 205–209 (2005).

    CAS 

    Google Scholar 

  • Yang, X. J. et al. China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev. 8, 131–136 (2013).

    Article 

    Google Scholar 

  • Liu, T. & Chen, J. Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol. 276, 119263 (2021).

    CAS 
    Article 

    Google Scholar 

  • Wang, L., Zhong, B., Liang, T., Xing, B. & Zhu, Y. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Sci. Total Environ. 572, 1–8 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gwenzi, W. et al. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 636, 299–313 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, W. S. et al. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere 216, 75–83 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lee, J. C. & Wen, Z. Rare earths from mines to metals: Comparing environmental impacts from China’s main production pathways. J. Ind. Ecol. 21(5), 1277–1290 (2017).

    CAS 
    Article 

    Google Scholar 

  • Shen, L., Wu, N., Zhong, S. & Gao, L. Overview on China’s rare earth industry restructuring and regulation reforms. J. Resour. Ecol. 8, 213–222 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    Genomic evidence for homoploid hybrid speciation between ancestors of two different genera