in

Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp. Hel_I_6 consumes alpha-mannan from fungi

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281:200–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schnepf E, Kühn S. Food uptake and fine structure of Cryothecomonas longipes sp. nov., a marine nanoflagellate incertae sedis feeding phagotrophically on large diatoms. Helgol Mar Res. 2000;54:18–32.

    Article 

    Google Scholar 

  • Garvetto A, Nézan E, Badis Y, Bilien G, Arce P, Bresnan E, et al. Novel widespread marine oomycetes parasitising diatoms, including the toxic genus pseudo-nitzschia: genetic, morphological, and ecological characterisation. Front Microbiol. 2018;9:2918.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gutiérrez MH, Jara AM, Pantoja S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol. 2016;18:1646–53.

    PubMed 
    Article 

    Google Scholar 

  • Scholz B, Guillou L, Marano AV, Neuhauser S, Sullivan BK, Karsten U, et al. Zoosporic parasites infecting marine diatoms – A black box that needs to be opened. Fungal Ecol. 2016;19:59–76.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hedges J, Baldock J, Gélinas Y, Lee C, Peterson M, Wakeham S. The biochemical and elemental compositions of marine plankton: A NMR perspective. Mar Chem. 2002;78:47–63.

    CAS 
    Article 

    Google Scholar 

  • Hedges JI, Baldock JA, Gelinas Y, Lee C, Peterson M, Wakeham SG. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature. 2001;409:801–4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10 (12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4:759–67.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chin W-C, Orellana MV, Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature. 1998;391:568–72.

    CAS 
    Article 

    Google Scholar 

  • Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr. 2002;55:287–333.

    Article 

    Google Scholar 

  • Fangel JU, Pedersen HL, Vidal-Melgosa S, Ahl LI, Salmean AA, Egelund J, et al. Carbohydrate microarrays in plant science. Methods Mol Biol. 2012;918:351–62.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vidal-Melgosa S, Pedersen HL, Schuckel J, Arnal G, Dumon C, Amby DB, et al. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes. J Biol Chem. 2015;290:9020–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Becker S, Scheffel A, Polz MF, Hehemann JH. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol. 2017;83:e03389-16.

  • Krüger K, Chafee M, Francis TB, del Rio TG, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kabisch A, Otto A, König S, Becher D, Albrecht D, Schüler M, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J. 2014;8:1492–502.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kappelmann L, Krüger K, Hehemann JH, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Unfried F, Becker S, Robb CS, Hehemann J-H, Markert S, Heiden SE, et al. Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms. ISME J. 2018;12:2894–906.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J. 2015;9:1410–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem. 2006;281:36269–79.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;4:447–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature. 2014;506:498–502.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, Brumer H. A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol. 2014;94:418–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ndeh D, Rogowski A, Cartmell A, Luis AS, Basle A, Gray J, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544:65–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reisky L, Préchoux A, Zühlke MK, Bäumgen M, Robb CS, Gerlach N, et al. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol. 2019;15:803–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hahnke RL, Harder J. Phylogenetic diversity of Flavobacteria isolated from the North Sea on solid media. Syst Appl Microbiol. 2013;36:497–504.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen J, Robb CS, Unfried F, Kappelmann L, Markert S, Song T, et al. Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018;20:4127–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bågenholm V, Reddy SK, Bouraoui H, Morrill J, Kulcinskaja E, Bahr CM, et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus: enzyme synergy and crystal structure of a β-mannanase. J Biol Chem. 2017;292:229–43.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.

    Article 

    Google Scholar 

  • Matulewicz M, Cerezo A. Water-soluble sulfated polysaccharides from the red seaweed Chaetangium fastigiatum. Analysis of the system and the structures of the α-D-(1→ 3)-linked mannans. Carbohydr Polym. 1987;7:121–32.

    CAS 
    Article 

    Google Scholar 

  • Tabarsa M, Karnjanapratum S, Cho M, Kim JK, You S. Molecular characteristics and biological activities of anionic macromolecules from Codium fragile. Int J Biol Macromol. 2013;59:1–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen Y, Mao WJ, Yan MX, Liu X, Wang SY, Xia Z, et al. Purification, chemical characterization, and bioactivity of an extracellular polysaccharide produced by the marine sponge endogenous fungus Alternaria sp. SP-32. Mar Biotechnol. 2016;18:301–13.

    CAS 
    Article 

    Google Scholar 

  • Gimenez-Abian MI, Bernabe M, Leal JA, Jimenez-Barbero J, Prieto A. Structure of a galactomannan isolated from the cell wall of the fungus Lineolata rhizophorae. Carbohydr Res. 2007;342:2599–603.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bennke CM, Krüger K, Kappelmann L, Huang S, Gobet A, Schüler M, et al. Polysaccharide utilisation loci of Bacteroidetes from two contrasting open ocean sites in the North Atlantic. Environ Microbiol. 2016;18:4456–70.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.

    Article 
    CAS 

    Google Scholar 

  • Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40(W1):W445–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gilchrist CLM, Chooi YH. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics. 2021;37:2473–75.

    CAS 
    Article 

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol. 2020;37:1237–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–W9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu H, Naismith JH. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2008;8:91.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hehemann JH, Smyth L, Yadav A, Vocadlo DJ, Boraston AB. Analysis of keystone enzyme in agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem. 2012;287:13985–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531–52.

    CAS 
    PubMed 

    Google Scholar 

  • Plante OJ, Palmacci ER, Seeberger PH. Automated solid-phase synthesis of oligosaccharides. Science. 2001;291:1523–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr. 2010;66:125–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010;66:133–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cohen SX, Ben Jelloul M, Long F, Vagin A, Knipscheer P, Lebbink J. et al. ARP/wARP and molecular replacement: the next generation. Acta Crystallogr D Biol Crystallogr. 2008;64:49–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):271–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta crystallogr D Biol Crystallogr. 2008;64:61–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–55.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mystkowska AA, Robb C, Vidal-Melgosa S, Vanni C, Fernandez-Guerra A, Hohne M, et al. Molecular recognition of the beta-glucans laminarin and pustulan by a SusD-like glycan-binding protein of a marine. Bacteroidetes FEBS J. 2018;285:4465–81.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jones DR, Xing X, Tingley JP, Klassen L, King ML, Alexander TW, et al. Analysis of active site architecture and reaction product linkage chemistry reveals a conserved cleavage substrate for an endo-alpha-mannanase within diverse yeast mannans. J Mol Biol. 2020;432:1083–97.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Starr CM, Masada RI, Hague C, Skop E, Klock JC. Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J Chromatogr A. 1996;720:295–321.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ivanova EP, Bowman JP, Christen R, Zhukova NV, Lysenko AM, Gorshkova NM, et al. Salegentibacter flavus sp. nov. Int J Syst Evol Microbiol. 2006;56:583–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liang QY, Xu ZX, Zhang J, Chen GJ, Du ZJ. Salegentibacter sediminis sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from coastal sediment. Int J Syst Evol Microbiol. 2018;68:2375–80.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nedashkovskaya OI, Kim SB, Lysenko AM, Mikhailov VV, Bae KS, Kim IS. Salegentibacter mishustinae sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol. 2005;55:235–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nedashkovskaya OI, Kim SB, Vancanneyt M, Shin DS, Lysenko AM, Shevchenko LS, et al. Salegentibacter agarivorans sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the sponge Artemisina sp. Int J Syst Evol Microbiol. 2006;56:883–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nedashkovskaya OI, Suzuki M, Vancanneyt M, Cleenwerck I, Zhukova NV, Vysotskii MV, et al. Salegentibacter holothuriorum sp. nov., isolated from the edible holothurian Apostichopus japonicus. Int J Syst Evol Microbiol. 2004;54:1107–10.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xia HF, Li XL, Liu QQ, Miao TT, Du ZJ, Chen GJ. Salegentibacter echinorum sp. nov., isolated from the sea urchin Hemicentrotus pulcherrimus. Antonie Van Leeuwenhoek. 2013;104:315–20.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yoon JH, Jung SY, Kang SJ, Jung YT, Oh TK. Salegentibacter salarius sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol. 2007;57:2738–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Regmi A, Boyd EF. Carbohydrate metabolic systems present on genomic islands are lost and gained in Vibrio parahaemolyticus. BMC Microbiol. 2019;19:112-.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shi H, Zhang Y, Xu B, Tu M, Wang F. Characterization of a novel GH2 family alpha-L-arabinofuranosidase from hyperthermophilic bacterium Thermotoga thermarum. Biotechnol Lett. 2014;36:1321–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhu Y, Suits MD, Thompson AJ, Chavan S, Dinev Z, Dumon C, et al. Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat Chem Biol. 2010;6:125–32.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gregg KJ, Zandberg WF, Hehemann JH, Whitworth GE, Deng L, Vocadlo DJ, et al. Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem. 2011;286:15586–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thompson AJ, Speciale G, Iglesias-Fernandez J, Hakki Z, Belz T, Cartmell A, et al. Evidence for a boat conformation at the transition state of GH76 alpha-1,6-mannanases-key enzymes in bacterial and fungal mannoprotein metabolism. Angew Chem. 2015;54:5378–82.

    CAS 
    Article 

    Google Scholar 

  • Thompson AJ, Cuskin F, Spears RJ, Dabin J, Turkenburg JP, Gilbert HJ, et al. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron. Acta Crystallogr D Biol Crystallogr. 2015;71:408–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eklöf JM, Shojania S, Okon M, McIntosh LP, Brumer H. Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products. J Biol Chem. 2013;288:15786–99.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Venugopal V. Marine polysaccharides: food applications. Boca Raton: CRC Press; 2016.

  • Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Comeau AM, Vincent WF, Bernier L, Lovejoy C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep. 2016;6:30120.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hassett BT, Gradinger R. Chytrids dominate arctic marine fungal communities. Environ Microbiol. 2016;18:2001–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duan Y, Xie N, Song Z, Ward CS, Yung C-M, Hunt DE, et al. A high-resolution time series reveals distinct seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA). Appl Environ Microbiol. 2018;84:e00967–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Priest T, Fuchs B, Amann R, Reich M. Diversity and biomass dynamics of unicellular marine fungi during a spring phytoplankton bloom. Environ Microbiol. 2021;23:448–63.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Picard KT. Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol. 2017;25:1–13.

    Article 

    Google Scholar 

  • Taylor JD, Cunliffe M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 2016;10:2118–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Banos S, Gysi DM, Richter-Heitmann T, Glöckner FO, Boersma M, Wiltshire KH, et al. Seasonal dynamics of pelagic mycoplanktonic communities: interplay of taxon abundance, temporal occurrence, and biotic interactions. Front Microbiol. 2020;11:1305.

  • Tisthammer KH, Cobian GM, Amend AS. Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 2016;19:39–46.

    Article 

    Google Scholar 

  • Tian T, Merico A, Su J, Staneva J, Wiltshire K, Wirtz K. Importance of resuspended sediment dynamics for the phytoplankton spring bloom in a coastal marine ecosystem. J Sea Res. 2009;62:214–28.

    Article 

    Google Scholar 

  • Gutiérrez MH, Pantoja S, Tejos E, Quiñones RA. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol. 2011;158:205–19.

    Article 

    Google Scholar 

  • Cunliffe M, Hollingsworth A, Bain C, Sharma V, Taylor JD. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol. 2017;30:135–8.

    Article 

    Google Scholar 

  • Chambouvet A, Monier A, Maguire F, Itoïz S, del Campo J, Elies P, et al. Intracellular infection of diverse diatoms by an evolutionary distinct relative of the fungi. Curr Biol. 2019;29:4093–101.e4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Buaya AT, Ploch S, Hanic L, Nam B, Nigrelli L, Kraberg A, et al. Phylogeny of Miracula helgolandica gen. et sp. nov. and Olpidiopsis drebesii sp. nov., two basal oomycete parasitoids of marine diatoms, with notes on the taxonomy of Ectrogella-like species. Mycol Prog. 2017;16:1041–50.

    Article 

    Google Scholar 

  • Meyers SP, Ahearn DG, Gunkel W, Roth FJ. Yeasts from the North Sea. Mar Biol. 1967;1:118–23.

    Article 

    Google Scholar 

  • Grossart H-P, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019;17:339–54.

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    Genomic evidence for homoploid hybrid speciation between ancestors of two different genera