Karr, J.R., & Chu, E.W. Introduction: sustaining living rivers. In Assessing the Ecological Integrity of Running Waters, Developments in Hydrobiology, vol 149 (eds. Jungwirth, M., Muhar, S., & S. Schmutz, S.) 1–14. (Springer: Dordrecht, 2000).
Lu, S., Dai, W., Tang, Y. & Guo, M. A review of the impact of hydropower reservoirs on global climate change. Sci. Total Environ. 711, 134996 (2020).
Google Scholar
Liu, C., Ahn, C. R., An, X. & Lee, S. H. Life-cycle assessment of concrete dam construction: comparison of environmental impact of rock-filled and conventional concrete. J. Constr. Eng. Manage. 20139(12), A4013009. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000752 (2013).
Google Scholar
Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).
Google Scholar
Grigg, N. S. Global water infrastructure: state of the art review. Int. J. Water Resour. Dev. 35(2), 181–205. https://doi.org/10.1080/07900627.2017.1401919 (2019).
Google Scholar
European Environment Agency. European waters: Assessment of status and pressures 2018. https://www.eea.europa.eu/publications/state-of-water (Publications Office of the European Union (2018).
Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).
Google Scholar
Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10(1), 015001 (2015).
Google Scholar
Kim, J. & An, K. G. Integrated ecological river health assessments, based on water chemistry, physical habitat quality and biological integrity. Water 7(11), 6378–6403. https://doi.org/10.3390/w7116378 (2015).
Google Scholar
Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561. https://doi.org/10.1038/nature09440 (2010).
Google Scholar
McCartney, M. Living with dams: managing the environmental impacts. Water Policy 11(S1), 121–139 (2009).
Google Scholar
Van Cappellen, P. & Maavara, T. Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 16(2), 106–111 (2016).
Google Scholar
Drouineau, H. et al. Freshwater eels: a symbol of the effects of global change. Fish Fish 19(5), 903–930 (2018).
Google Scholar
Jones, J. et al. A comprehensive assessment of stream fragmentation in Great Britain. Sci. Total Environ. 673, 756–762. https://doi.org/10.1016/j.scitotenv.2019.04.125 (2019).
Google Scholar
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).
Google Scholar
Hermoso, V., Clavero, M., Blanco-Garrido, F. & Prenda, J. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecol. Appl. 21(1), 175–188 (2011).
Google Scholar
Maceda-Veiga, A. Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Rev. Fish Biol. Fish. 23(1), 1–22 (2013).
Google Scholar
Sánchez-Pérez, A. et al. Seasonal use of fish passes in a modified Mediterranean river: first insights of the LIFE+ Segura-Riverlink. FiSHMED 008, 3. https://doi.org/10.29094/FiSHMED.2016.008 (2016).
Google Scholar
Schiermeir, Q. Dam removal restores rivers. Nature 557, 290–291. https://doi.org/10.1038/d41586-018-05182-1 (2018).
Google Scholar
Benjankar, R. et al. Dam operations may improve aquatic habitat and offset negative effects of climate change. J. Environ. Manage. 213, 126–134. https://doi.org/10.1016/j.jenvman.2018.02.066 (2018).
Google Scholar
Tupiño Salinas, C. E., Pinto Vidal de Oliveira, V., Brito, L., Ferreira, A. V. & de Araújo, J. C. Social impacts of a large-dam construction: the case of Castanhão, Brazil. Water Int. 44(8), 871–885. https://doi.org/10.1080/02508060.2019.1677303 (2019).
Google Scholar
Opperman, J. J. et al. Valuing Rivers: How the diverse benefits of healthy rivers underpin economies. WWF Global Science (2018).
Kellner, E. Social acceptance of a multi-purpose reservoir in a recently deglaciated landscape in the Swiss Alps. Sustainability 11, 3819. https://doi.org/10.3390/su11143819 (2019).
Google Scholar
Boyé, H., & de Vivo, M. The environmental and social acceptability of dams. Field Actions Sci. Rep. http://journals.openedition.org/factsreports/4055 (2016).
Wiejaczka, Ł, Piróg, D. & Fidelus-Orzechowska, J. Cost-benefit analysis of dam projects: the perspectives of resettled and non-resettled communities. Water Resour. Manag. 34(1), 343–357 (2020).
Google Scholar
Rodeles, A. A., Galicia, D. & Miranda, R. Recommendations for monitoring freshwater fishes in river restoration plans: a wasted opportunity for assessing impact. Aquat. Conserv. 27(4), 880–885. https://doi.org/10.1002/aqc.2753 (2017).
Google Scholar
Birnie-Gauvin, K., Tummers, J. S., Lucas, M. C. & Aarestrup, K. Adaptive management in the context of barriers in European freshwater ecosystems. J. Environ. Manag. 204, 436–441. https://doi.org/10.1016/j.jenvman.2017.09.023 (2017).
Google Scholar
Yousefi-Sahzabi, A. et al. Turkish challenges for low-carbon society: current status, government policies and social acceptance. Renew. Sustain. Energy Rev. 68, 596–608. https://doi.org/10.1016/j.rser.2016.09.090 (2017).
Google Scholar
Jiang, H., Lin, P. & Qiang, M. Public-opinion sentiment analysis for large hydro projects. J. Construct. Eng. Manage. 142(2), 05015013. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001039 (2016).
Google Scholar
Schulz, C., Martin-Ortega, J. & Glenk, K. Understanding public views on a dam construction boom: the role of values. Water Resour. Manage. 33, 4687–4700. https://doi.org/10.1007/s11269-019-02383-9 (2019).
Google Scholar
Kirchherr, J., Pohlner, H. & Charles, K. J. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams. Environ. Impact Assess. Rev. 60, 115–125. https://doi.org/10.1016/j.eiar.2016.02.007 (2016).
Google Scholar
Piróg, D., Fidelus-Orzechowska, J., Wiejaczka, L. & Łajczak, A. Hierarchy of factors affecting the social perception of dam reservoirs. Environ. Impact Assess. Rev. 79, 106301. https://doi.org/10.1016/j.eiar.2019.106301 (2019).
Google Scholar
Arboleya, E., Fernandez, S., Clusa, L., Dopico, E. & Garcia-Vazquez, E. River connectivity is crucial for safeguarding biodiversity but may be socially overlooked. Insights from Spanish University students. Front. Environ. Sci. 9, 643820. https://doi.org/10.3389/fenvs.2021.643820 (2021).
Google Scholar
Gilg, A., & Barr, S. Behavioural attitudes towards water saving? Evidence from a study of environmental actions. Ecol. Econ. 57(3), 400–414. doi:https://doi.org/10.1016/j.ecolecon.2005.04.010 (2006)
Schapper, A., Unrau, C., & Killoh, S. Social mobilization against large hydroelectric dams: a comparison of Ethiopia, Brazil, and Panama. Sustain. Develop. 28, 413–423. doi:https://doi.org/10.1002/sd.1995 (2020)
Flaminio, S., Piégay, H., & Le Lay, Y-F. To dam or not to dam in an age of anthropocene: insights from a genealogy of media discourses. Anthropocene. 36, 100312, doi:https://doi.org/10.1016/j.ancene.2021.100312 (2021)
Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: If you remove it, what’s to come?. Bioscience 69(1), 26–39. https://doi.org/10.1093/biosci/biy152 (2019).
Google Scholar
Heberlein, T. A. Navigating environmental attitudes. Conserv. Biol. 26(4), 583–585. https://doi.org/10.1111/j.1523-1739.2012.01892.x (2012).
Google Scholar
Lewandowsky, S., Gignac, G. E. & Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Change. 3, 399–404. https://doi.org/10.1038/NCLIMATE1720 (2013).
Google Scholar
Schuldt, J. P., Roh, S. & Schwarz, N. Questionnaire design effects in climate change surveys: Implications for the partisan divide. Ann. Am. Acad. Pol. Soc. Sci. 658(1), 67–85. https://doi.org/10.1177/0002716214555066 (2015).
Google Scholar
Bowden, V., Nyberg, D. & Wright, C. Planning for the past: local temporality and the construction of denial in climate change adaptation. Glob. Environ. Change 57, 101939. https://doi.org/10.1016/j.gloenvcha.2019.101939 (2019).
Google Scholar
Venus, T. E., Hinzmann, M., Bakken, T. H., Gerdes, H., Nunes Godinho, F., Hansen, B., Pinheiro, A., & Sauer, J. The public’s perception of run-of-the-river hydropower across Europe. Energy Policy. 140, 111422. doi:https://doi.org/10.1016/j.enpol.2020.111422 (2020)
Schober, M. F. The future of face-to-face interviewing. Qual. Assur. Educ. 26(2), 290–302. https://doi.org/10.1108/QAE-06-2017-0033 (2018).
Google Scholar
Couper, M. P. The future of modes of data collection. Public Opin. Q. 75, 889–908. https://doi.org/10.1093/poq/nfr046 (2011).
Google Scholar
Zhang, X., Kuchinke, L., Woud, M. L., Velten, J. & Margraf, J. Survey method matters: Online/offline questionnaires and face-to-face or telephone interviews differ. Comput. Hum. Behav. 71, 172–180. https://doi.org/10.1016/j.chb.2017.02.006 (2017).
Google Scholar
Garcia de Leaniz, C., Berkhuysen, A., & Belletti, B. Beware small dams, they can do damage, too. Nature 570, 164–164; doi:https://doi.org/10.1038/d41586-019-01826-y (2019).
Belletti, B., et al. Small isn’t beautiful: the impact of small barriers on longitudinal connectivity of European rivers. Geophys. Res. Abst. 20: EGU2018-PREVIEW (2018).
Hophmayer-Tokich, S. & Krozer, Y. Public participation in rural area water management: experiences from the North Sea countries in Europe. Water Int. 33(2), 243–257. https://doi.org/10.1080/02508060802027604 (2008).
Google Scholar
San-Martín, E., Larraz, B. & Gallego, M. S. When the river does not naturally flow: a case study of unsustainable management in the Tagus River (Spain). Water Int. 45(3), 189–221. https://doi.org/10.1080/02508060.2020.1753395 (2020).
Google Scholar
Dunlap, R. E. Environmental concern. The Wiley‐Blackwell Encyclopedia of Globalization. (Wiley, Amsterdam, 2012).
European Commission Ethics for researchers. Facilitating Research Excellence in FP7. https://doi.org/10.2777/7491 (Publications Office of the European Union, 2013).
Jenner, B. M. & Myers, K. C. Intimacy, rapport, and exceptional disclosure: a comparison of in-person and mediated interview contexts. Int. J. Soc. Res. Methodol. 22(2), 165–177. https://doi.org/10.1080/13645579.2018.1512694 (2019).
Google Scholar
Given, L. M. 100 questions (and answers) about qualitative research (Sage, 2015).
Saris, W. E. & Gallhofer, I. N. Design, evaluation, and analysis of questionnaires for survey research (Wiley, 2014).
Google Scholar
Avella, J. R. Delphi panels: research design, procedures, advantages, and challenges. IJDS 11(1), 305–321. https://doi.org/10.28945/3561 (2016).
Google Scholar
Vandenplas, C. & Loosveldt, G. Modeling the weekly data collection efficiency of face-to-face surveys: six rounds of the European social survey. J. Surv. Stat. Methodol. 5(2), 212–232. https://doi.org/10.1093/jssam/smw034 (2017).
Google Scholar
Barbero-García, M. I., Vila-Abad, E. & Holgado-Tello, F. P. Tests adaptation in cross-cultural comparative studies. Acción Psicol. 5, 7–16. https://doi.org/10.5944/ap.5.2.454 (2008).
Google Scholar
Flick, U. Triangulation in data collection. The SAGE Handbook of Qualitative Data Collection. (Sage, London, 2018).
Heesen, R., Bright, L. K. & Zucker, A. Vindicating methodological triangulation. Synthese 196(8), 3067–3081. https://doi.org/10.1007/s11229-016-1294-7 (2019).
Google Scholar
DeVellis, R. F. Scale development: Theory and applications (Sage, 2012).
Hammer, Ø., Harper, D.A.T., & Ryan, P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Elect. 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001).
Source: Ecology - nature.com