in

Variation in the ratio of compounds in a plant volatile blend during transmission by wind

  • Beyaert, I. & Hilker, M. Plant odour plumes as mediators of plant–insect interactions. Biol. Rev. 89, 68–81 (2014).

    Google Scholar 

  • Simpraga, M., Takabayashi, J. & Holopainen, J. K. Language of plants: Where is the word?. J. Integr. Plant Biol. 58, 343–349 (2016).

    CAS 

    Google Scholar 

  • Bruce, T. J. A., Wadhams, L. J. & Woodcock, C. M. Insect host location: A volatile situation. Trends Plant Sci. 10, 269–274 (2005).

    CAS 

    Google Scholar 

  • Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry 72, 1605–1611 (2011).

    CAS 

    Google Scholar 

  • Raguso, R. A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. S. 39, 549–569 (2008).

    Google Scholar 

  • Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).

    Google Scholar 

  • Arimura, G., Kost, C. & Boland, W. Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta. 1734, 91–111 (2005).

    CAS 

    Google Scholar 

  • Hare, J. D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56, 161–180 (2011).

    CAS 

    Google Scholar 

  • Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the earth system. New Phytol. 183, 27–51 (2009).

    CAS 

    Google Scholar 

  • Dicke, M., van Loon, J. J. A. & Soler, R. Chemical complexity of volatiles from plant induced by multiple attack. Nature Chem. Biol. 5, 317–324 (2009).

    CAS 

    Google Scholar 

  • Loreto, F. & Schnitzler, J. P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166 (2010).

    CAS 

    Google Scholar 

  • Tasin, M. et al. Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68, 203–209 (2007).

    CAS 

    Google Scholar 

  • Riffell, J. A., Lei, H., Christensen, T. A. & Hildebrand, J. G. Characterization and coding of behaviorally significant odor mixtures. Curr. Biol. 19, 335–340 (2009).

    CAS 

    Google Scholar 

  • Riffell, J. A., Lei, H. & Hildebrand, J. G. Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc. Natl. Acad. Sci. USA 106, 19219–19226 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Atema, J. Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors. Biol. Bull. 191, 129–138 (1996).

    CAS 

    Google Scholar 

  • Conchou, L. et al. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 10, 972 (2019).

    Google Scholar 

  • Riffell, J. A., Abrell, L. & Hildebrand, J. G. Physical processes and real-time chemical measurement of the insect olfactory environment. J. Chem. Ecol. 34, 837–853 (2008).

    CAS 

    Google Scholar 

  • Mylne, K. R., Davidson, M. J. & Thomson, D. J. Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Bound-Lay. Meteorol. 79, 225–242 (1996).

    ADS 

    Google Scholar 

  • Finelli, C. M., Pentcheff, N. D., Zimmer-Faust, R. K. & Wethey, D. S. Odor transport in turbulent flows: Constraints on animal navigation. Limnol. Oceanogr. 44, 1056–1071 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).

    Google Scholar 

  • Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211–222 (2000).

    CAS 

    Google Scholar 

  • Kennedy, J. S. The visual response of flying mosquitoes. Proc. Zool. Soc. London Ser. A 109, 221–242 (1940).

    Google Scholar 

  • Bursell, E. Observations on the orientation of tsetse flies (Glossina pallidipes) to wind-borne odours. Physio. Entomol. 9, 133–137 (1984).

    Google Scholar 

  • Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992).

    Google Scholar 

  • Kennedy, J. S., Ludlow, A. R. & Sanders, C. J. Guidance of flying male moths by wind-borne sex-pheromone. Physiol. Entomol. 6, 395–412 (1981).

    Google Scholar 

  • Koehl, M. A. R. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31, 93–105 (2006).

    CAS 

    Google Scholar 

  • Baker, T. C., Willis, M. A., Haynes, K. F. & Phelan, P. L. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10, 257–265 (1985).

    Google Scholar 

  • Willis, M. A. & Baker, T. C. Effects of intermittent and continuous pheromone stimulation on the flight behavior of the oriental fruit moth, Grapholita molesta. Physiol. Entomol. 9, 341–358 (1984).

    Google Scholar 

  • Mafraneto, A. & Cardé, R. T. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Mafraneto, A. & Cardé, R. T. Dissection of the pheromone-modulated flight of moths using single-pulse response as a template. Experientia 52, 373–379 (1996).

    CAS 

    Google Scholar 

  • Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. USA 91, 5756–5760 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Lei, H., Riffell, J. A., Gage, S. L. & Hildebrand, J. G. Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J. Biol. 8, 21 (2009).

    Google Scholar 

  • Kuenen, L. & Carde, R. T. Strategies for recontacting a lost pheromone plume: Casting and upwind flight in the male gypsy moth. Physiol. Entomol. 19, 15–29 (1994).

    Google Scholar 

  • Vickers, N. J. & Baker, T. C. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J. Comp. Physiol. A. 178, 831–847 (1996).

    Google Scholar 

  • Vickers, N. J. Mechanisms of animal navigation in odor plumes. Biol. Bull. 198, 203–212 (2000).

    CAS 

    Google Scholar 

  • Cardé, R. T. & Willis, M. A. Navigational strategies used by insects to find distant, wind-borne sources of odor. J. Chem. Ecol. 34, 854–866 (2008).

    Google Scholar 

  • Willis, M. A. & Baker, T. C. Effects of varying sex pheromone component ratios on the zigzagging flight movements of the oriental fruit moth, Grapholita molesta. J. Insect. Behav. 1, 357–371 (1988).

    Google Scholar 

  • Voskamp, K. E., Den Otter, C. J. & Noorman, N. Electroantennogram responses of tsetse flies (Glossina pallidipes) to host odours in an open field and riverine woodland. Physiol. Entomol. 23, 176–183 (1998).

    Google Scholar 

  • Cai, X. M., Xu, X. X., Bian, L., Luo, Z. X. & Chen, Z. M. Measurement of volatile plant compounds in field ambient air by thermal desorption–gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 407, 9105–9114 (2015).

    CAS 

    Google Scholar 

  • Zollner, G. E., Torr, S. J., Ammann, C. & Meixner, F. X. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. Physiol. Entomol. 29, 381–394 (2004).

    Google Scholar 

  • McFrederick, Q. S., Kathilankal, J. C. & Fuentes, J. D. Air pollution modifies floral scent trails. Atmos. Environ. 42, 2336–2348 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F. & NealStewart, C. Jr. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol. Evol. 24, 323–331 (2009).

    Google Scholar 

  • Weissburg, M. J. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198, 188–202 (2000).

    CAS 

    Google Scholar 

  • Atkinson, R. & Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 37, 197–219 (2003).

    ADS 

    Google Scholar 

  • Helmig, D., Bocquet, F., Pollmann, J. & Revermann, T. Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments. Atmos. Environ. 38, 557–572 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Riffell, J. A, Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A. J. & NathanKutz, J. Flower discrimination by pollinators in a dynamic chemical environment. Science 344, 1515–1518 (2014).

  • Shorey, H. H. Animal communication by pheromones (Academic Press, 1976).

  • Cardé, R. T. & Charlton, R. E. Olfactory sexual communication in Lepidoptera: Strategy, sensitivity and selectivity In Insect communication (ed. Lewis, T.) 241–265 (Academic Press, 1984).

  • Elkinton, J. S., Schal, C., Ono, T. & Carde, R. T. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol. 12, 399–406 (1987).

    Google Scholar 

  • Baker, T. C., Fadamiro, H. Y. & Cosse, A. A. Moth uses fine tuning for odour resolution. Nature 393, 530 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Szyszka, P., Stierle, J. S., Biergans, S. & Galizia, C. G. The speed of smell: Odor-object segregation within milliseconds. PLoS One 7, e36096 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Hildebrand, J. G. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci. USA 92, 67–74 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Cai, X. M. et al. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci. Rep. 7, 41818 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Xu, X. X. et al. Does background odor in tea gardens mask attractants? Screening and application of attractants for Empoasca onukii Matsuda. J. Econ. Entomol. 110, 2357–2363 (2017).

    CAS 

    Google Scholar 

  • Hare, J. D. & Sun, J. J. Production of induced volatiles by Datura wrightii in response to damage by insects: Effect of herbivore species and time. J. Chem. Ecol. 37, 751–764 (2011).

    CAS 

    Google Scholar 

  • Mumm, R., Tiemann, T., Schulz, S. & Hilker, M. Analysis of volatiles from black pine (Pinus nigra): Significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry 65, 3221–3230 (2004).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Large-scale forecasting of Heracleum sosnowskyi habitat suitability under the climate change on publicly available data

    Embracing ancient materials and 21st-century challenges