in

Elevated extinction risk of cacti under climate change

  • Boyle, T. H. & Anderson, E. in Cacti: Biology and Uses (ed. Nobel, P. S.) 125–141 (Univ. California Press, 2002).

  • Gibson, A. C. & Nobel, P. S. The Cactus Primer (Harvard Univ. Press, 1986).

  • Bravo Hollis, H. & Sánchez Mejorada, H. Las Cactáceas de México (Univ. Nacional Autónoma de México, 1978).

  • Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Benavides, E., Breceda, A. & Anadón, J. D. Winners and losers in the predicted impact of climate change on cacti species in Baja California. Plant Ecol. 222, 29–44 (2021).

    Google Scholar 

  • Nobel, P. S. Responses of some North American CAM plants to freezing temperatures and doubled CO2 concentrations: implications of global climate change for extending cultivation. J. Arid. Environ. 34, 187–196 (1996).

    Google Scholar 

  • Reyes-García, C. & Andrade, J. L. Crassulacean acid metabolism under global climate change. N. Phytol. 181, 754–757 (2009).

    Google Scholar 

  • Smith, S. D., Didden-Zopfy, B. & Nobel, P. S. High-temperature responses of North American cacti. Ecology 65, 643–651 (1984).

    Google Scholar 

  • Larios, E., González, E. J., Rosen, P. C., Pate, A. & Holm, P. Population projections of an endangered cactus suggest little impact of climate change. Oecologia 192, 439–448 (2020).

    PubMed 

    Google Scholar 

  • Esparza-Olguı́n, L., Valverde, T. & Vilchis-Anaya, E. Demographic analysis of a rare columnar cactus (Neobuxbaumia macrocephala) in the Tehuacan Valley, Mexico. Biol. Conserv. 103, 349–359 (2002).

    Google Scholar 

  • Seal, C. E. et al. Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Glob. Change Biol. 23, 5309–5317 (2017).

    Google Scholar 

  • Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Google Scholar 

  • Gurvich, D. E. et al. Combined effect of water potential and temperature on seed germination and seedling development of cacti from a mesic Argentine ecosystem. Flora 227, 18–24 (2017).

    Google Scholar 

  • Nuzhyna, N., Baglay, K., Golubenko, A. & Lushchak, O. Anatomically distinct representatives of Cactaceae Juss. family have different response to acute heat shock stress. Flora 242, 137–145 (2018).

    Google Scholar 

  • Andrade, J. L. & Nobel, P. S. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29, 261–270 (1997).

    Google Scholar 

  • Williams, D. G., Hultine, K. R. & Dettman, D. L. Functional trade-offs in succulent stems predict responses to climate change in columnar cacti. J. Exp. Bot. 65, 3405–3413 (2014).

    PubMed 

    Google Scholar 

  • Aragón-Gastélum, J. L. et al. Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora Morphol. Distrib. Funct. Ecol. Plants 209, 499–503 (2014).

    Google Scholar 

  • Martorell, C., Montañana, D. M., Ureta, C. & Mandujano, M. C. Assessing the importance of multiple threats to an endangered globose cactus in Mexico: cattle grazing, looting and climate change. Biol. Conserv. 181, 73–81 (2015).

    Google Scholar 

  • Dávila, P., Téllez, O. & Lira, R. Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, Mexico. Plant Biosyst. 147, 376–386 (2013).

    Google Scholar 

  • Conver, J. L., Foley, T., Winkler, D. E. & Swann, D. E. Demographic changes over >70 yr in a population of saguaro cacti (Carnegiea gigantea) in the northern Sonoran Desert. J. Arid. Environ. 139, 41–48 (2017).

    Google Scholar 

  • Carrillo-Angeles, I. G., Suzán-Azpiri, H., Mandujano, M. C., Golubov, J. & Martínez-Ávalos, J. G. Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). J. Arid. Environ. 124, 310–317 (2016).

    Google Scholar 

  • de Cavalcante, A. M. B. & de Duarte, A. S. Modeling the distribution of three cactus species of the Caatinga biome in future climate scenarios. Int. J. Ecol. Environ. Sci. 45, 191–203 (2019).

    Google Scholar 

  • de Cavalcante, A. M. B., de Duarte, A. S. & Ometto, J. P. H. B. Modeling the potential distribution of Epiphyllum phyllanthus (L.) Haw. under future climate scenarios in the Caatinga biome. An. Acad. Bras. Cienc. 92, 351–358 (2020).

    Google Scholar 

  • Tellez-Valdes, O. & DiVila-Aranda, P. Protected areas and climate change: a case study of the cacti in the Tehuacan-Cuicatlan biosphere reserve, Mexico. Conserv. Biol. 17, 846–853 (2003).

    Google Scholar 

  • dos Santos Simões, S., Zappi, D., da Costa, G. M., de Oliveira, G. & Aona, L. Y. S. Spatial niche modelling of five endemic cacti from the Brazilian Caatinga: past, present and future. Austral Ecol. 45, 1–13 (2019).

    Google Scholar 

  • Gorostiague, P., Sajama, J. & Ortega-Baes, P. Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biol. Conserv. 226, 247–255 (2018).

    Google Scholar 

  • Butler, C. J., Wheeler, E. A. & Stabler, L. B. Distribution of the threatened lace hedgehog cactus (Echinocereus reichenbachii) under various climate change scenarios. J. Torre. Bot. Soc. 139, 46–55 (2012).

    Google Scholar 

  • Johnson, C. N. Species extinction and the relationship between distribution and abundance. Nature 394, 272–274 (1998).

    CAS 

    Google Scholar 

  • Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).

    Google Scholar 

  • Enquist, B. J. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615v2 (2016).

  • Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).

    Google Scholar 

  • Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goettsch, B., Durán, A. P. & Gaston, K. J. Global gap analysis of cactus species and priority sites for their conservation. Conserv. Biol. 33, 369–376 (2018).

    PubMed 

    Google Scholar 

  • Maitner, B. S. et al. The bien R package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).

    Google Scholar 

  • Brodzik, M. J., Billingsley, B., Haran, T., Raup, B. & Savoie, M. H. EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets. ISPRS Int. J. Geo-Inf. 1, 32–45 (2012).

    Google Scholar 

  • Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, S. maxnet: Fitting ‘maxent’ species distribution models with ‘glmnet’. R package version 0.1.4. https://CRAN.R-project.org/package=maxnet (2017).

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Google Scholar 

  • Franklin, S. B., Gibson, D. J., Robertson, P. A., Pohlmann, J. T. & Fralish, J. S. Parallel analysis: a method for determining significant principal components. J. Veg. Sci. 6, 99–106 (1995).

    Google Scholar 

  • Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).

    Google Scholar 

  • Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Google Scholar 

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob. Ecol. Biogeogr. 23, 99–112 (2014).

    Google Scholar 

  • R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019). https://www.R-project.org/


  • Source: Ecology - nature.com

    Engineers enlist AI to help scale up advanced solar cell manufacturing

    Developing electricity-powered, low-emissions alternatives to carbon-intensive industrial processes