in

Convergence in water use efficiency within plant functional types across contrasting climates

  • Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    CAS 
    Article 

    Google Scholar 

  • Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    CAS 
    Article 

    Google Scholar 

  • Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    CAS 
    Article 

    Google Scholar 

  • Beer, C. et al. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 23, 1–13 (2009).

    Article 

    Google Scholar 

  • Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    CAS 
    Article 

    Google Scholar 

  • Frank, D. C. et al. Water-use efficiency & transpiration across European forests during the Anthropocene. Nat. Clim. Change 5, 579–583 (2015).

    CAS 
    Article 

    Google Scholar 

  • Mastrotheodoros, T. et al. Linking plant functional trait plasticity and the large increase in forest water use efficiency. J. Geophys. Res. Biogeosci. 122, 2393–2408 (2017).

    Article 

    Google Scholar 

  • Lavergne, A. et al. Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. Glob. Change Biol. 25, 2242–2257 (2019).

    Article 

    Google Scholar 

  • Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    CAS 
    Article 

    Google Scholar 

  • Yang, Y. et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 6, 23284 (2016).

    CAS 
    Article 

    Google Scholar 

  • Huang, L. et al. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Sci. Total Environ. 601–602, 1097–1107 (2017).

    Article 

    Google Scholar 

  • Reichstein, M. et al. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob. Change Biol. 8, 999–1017 (2002).

    Article 

    Google Scholar 

  • Reichstein, M. et al. Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems. J. Geophys. Res. Atmos. 108, 4726 (2003).

    Article 

    Google Scholar 

  • Cooley, S. S. et al. Assessing regional drought impacts on vegetation and evapotranspiration: a case study in Guanacaste, Costa Rica. Ecol. Appl. 29, e01834 (2019).

    Article 

    Google Scholar 

  • Medrano, H., Flexas, J. & Galmés, J. Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 317, 17–29 (2008).

    Article 

    Google Scholar 

  • Soh, W. K. et al. Rising CO2 drives divergence in water use efficiency of evergreen and deciduous plants. Sci. Adv. 5, eaax7906 (2019).

    CAS 
    Article 

    Google Scholar 

  • Wang, M., Chen, Y., Wu, X. & Bai, Y. Forest-type-dependent water use efficiency trends across the northern hemisphere. Geophys. Res. Lett. 45, 8283–8293 (2018).

    Article 

    Google Scholar 

  • Enquist, B. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res. 52, 249–318 (2015).

    Article 

    Google Scholar 

  • Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    Article 

    Google Scholar 

  • Bagousse‐Pinguet, Y. L. et al. Testing the environmental filtering concept in global drylands. J. Ecol. 105, 1058–1069 (2017).

    Article 

    Google Scholar 

  • Ponce Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 349–352 (2013).

    CAS 
    Article 

    Google Scholar 

  • Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).

    Article 

    Google Scholar 

  • Xue, B.-L. et al. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere 6, art174 (2015).

    Article 

    Google Scholar 

  • Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, e2019WR026058 (2020).

    Article 

    Google Scholar 

  • Higgins, M. A. et al. Geological control of floristic composition in Amazonian forests. J. Biogeogr. 38, 2136–2149 (2011).

    Article 

    Google Scholar 

  • De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C. & Terrer, C. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nat. Clim. Change 6, 892–893 (2016).

    Article 

    Google Scholar 

  • Huang, M. et al. Seasonal responses of terrestrial ecosystem water-use efficiency to climate change. Glob. Change Biol. 22, 2165–2177 (2016).

    Article 

    Google Scholar 

  • Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464 (2015).

    CAS 
    Article 

    Google Scholar 

  • Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    Article 

    Google Scholar 

  • Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744–748 (2018).

    CAS 
    Article 

    Google Scholar 

  • Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).

    Article 

    Google Scholar 

  • Fisher, J. B. ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS): Level-3 Evapotranspiration L3(ET_PT-JPL) Algorithm Theoretical Basis Document. Jet Propulsion Laboratory, California Institute of Technology (2018).

  • Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54, 547–560 (2004).

    Article 

    Google Scholar 

  • Heinsch, F. et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 44, 1908–1925 (2006).

    Article 

    Google Scholar 

  • Zhao, M., Heinsch, F., Nemani, R. & Running, S. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).

    Article 

    Google Scholar 

  • Ryu, Y. et al. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 25, GB4017 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineers enlist AI to help scale up advanced solar cell manufacturing

    Developing electricity-powered, low-emissions alternatives to carbon-intensive industrial processes