Desbruyères, D., Segonzac, M. & Bright, M. Handbook of deep-Sea Hydrothermal Vent Fauna 2nd edn. (Biologiezentrum, 2006).
Van Dover, C. L. The Ecology of Deep-Sea Hydrothermal Vents (Princeton University Press, 2000).
Google Scholar
Tarasov, V. G., Gebruk, A. V., Mironov, A. N. & Moskalev, L. I. Deep-sea and upper sublittoral hydrothermal vent communities: Two different phenomena?. Chem. Geol. 224, 5–39. https://doi.org/10.1016/j.chemgeo.2005.07.021 (2005).
Google Scholar
Lonsdale, P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 24, 857–863. https://doi.org/10.1016/0146-6291(77)90478-7 (1977).
Google Scholar
Reid, W. D. et al. Spatial differences in East Scotia Ridge hydrothermal vent food webs: Influences of chemistry, microbiology and predation on trophodynamics. PLoS One 8, e65553. https://doi.org/10.1371/journal.pone.006555 (2013).
Google Scholar
Levin, L. A. et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Mar. Sci. 3, 72. https://doi.org/10.3389/fmars.2016.00072 (2016).
Google Scholar
Mullineaux, L. S. et al. Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework. Front. Mar. Sci. 5, 49. https://doi.org/10.3389/fmars.2018.00049 (2018).
Google Scholar
Tarasov, V. G. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific. Adv. Mar. Biol. 50, 267–421. https://doi.org/10.1016/S0065-2881(05)50004-X (2006).
Google Scholar
Dando, P. R. Biological communities at marine shallow-water vent and seep sites. In The Vent and Seep Biota (ed. Kiel, S.) 333–378 (Springer, 2010).
Google Scholar
Couto, R. P., Rodriguesa, A. S. & Neto, A. I. Shallow-water hydrothermal vents in the Azores (Portugal). J. Integr. Coast. Zone Manage. 15, 495–505. https://doi.org/10.5894/rgci584 (2015).
Google Scholar
Bellec, L. et al. Microbial communities of the shallow-water hydrothermal vent near Naples, Italy, and chemosynthetic symbionts associated with a free-living marine nematode. Front. Microbiol. 11, 2023. https://doi.org/10.3389/fmicb.2020.02023 (2020).
Google Scholar
Chan, B. K. K. et al. Community structure of macrobiota and environmental parameters in shallow water hydrothermal vents off Kueishan Island, Taiwan. PLoS One 11, e0148675. https://doi.org/10.1371/journal.pone.0148675 (2016).
Google Scholar
Donnarumma, L. et al. Environmental and benthic community patterns of the shallow hydrothermal area of Secca Delle Fumose (Baia, Naples, Italy). Front. Mar. Sci. 6, 685. https://doi.org/10.3389/fmars.2019.00685 (2019).
Google Scholar
Southward, A. J. et al. On the biology of submarine caves with sulphur springs: Appraisal of 13C/12C ratios as a guide to trophic relations. J. Mar. Biol. Ass. UK 76, 265–285. https://doi.org/10.1017/S002531540003054X (1996).
Google Scholar
Southward, A. J. et al. Behaviour and feeding of the Nassariid gastropod Cyclope neritea, abundant at hydrothermal brine seeps off Milos (Aegean Sea). J. Mar. Biol. Ass. UK 77, 753–771. https://doi.org/10.1017/S0025315400036171 (1997).
Google Scholar
Chang, N. N. et al. Trophic structure and energy flow in a shallow-water hydrothermal vent: Insights from a stable isotope approach. PLoS One 13, e0204753. https://doi.org/10.1371/journal.pone.0204753 (2018).
Google Scholar
Trager, G. C. & DeNiro, M. J. Chemoautotrophic sulphur bacteria as a food source for mollusks at intertidal hydrothermal vents: Evidence from stable isotopes. Veliger 33, 359–362 (1990).
Kharlamenko, V. I., Zhukova, N. V., Khotimchenko, S. V., Svetashev, V. I. & Kamenev, G. M. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar. Ecol. Progr. Ser. 120, 231–241. https://doi.org/10.3354/meps120231 (1995).
Google Scholar
Chen, C. T. A. et al. Investigation into extremely acidic hydrothermal fluids off Kueishantao Islet, Taiwan. Acta. Oceanol. Sin. 24, 125–133 (2005).
Google Scholar
Wang, T. W., Chan, T. Y. & Chan, B. K. K. Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: A combined morphological, gut content analysis and stable isotope approach. Mar. Biol. 161, 2447–2463. https://doi.org/10.1007/s00227-014-2479-6 (2014).
Google Scholar
Chen, C., Chan, T. Y. & Chan, B. K. K. Molluscan diversity in shallow water hydrothermal vents off Kueishan Island, Taiwan. Mar. Biodivers. 48, 709–714. https://doi.org/10.1007/s12526-017-0804-2 (2017).
Google Scholar
Lebrato, M. et al. Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry. Sci. Rep. 9, 16926. https://doi.org/10.1038/s41598-019-53314-y (2019).
Google Scholar
Lin, Y.-S. et al. Intense but variable autotrophic activity in a rapidly flushed shallow-water hydrothermal plume (Kueishantao Islet, Taiwan). Geobiology 19, 87–101. https://doi.org/10.1111/gbi.12418 (2021).
Google Scholar
Jeng, M. S., Ng, N. K. & Ng, P. K. L. Hydrothermal vent crabs feast on sea ‘snow’. Nature 432, 969. https://doi.org/10.1038/432969a (2004).
Google Scholar
Ho, T. W., Hwang, J. S., Cheung, M. K., Kwan, H. S. & Wong, C. K. Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing. Mar. Biol. 162, 1787–1798. https://doi.org/10.1007/s00227-015-2711-z (2015).
Google Scholar
Yang, S. H. et al. Bacterial community associated with organs of shallow hydrothermal vent crab Xenograpsus testudinatus near Kueishan Island, Taiwan. PLoS One 11, e0150597. https://doi.org/10.1371/journal.pone.0150597 (2016).
Google Scholar
Wu, J.-Y. et al. Isotopic niche differentiation in benthic consumers from shallow-water hydrothermal vents and nearby non-vent rocky reefs in northeastern Taiwan. Prog. Oceanogr. 195, 102596. https://doi.org/10.1016/j.pocean.2021.102596 (2021).
Google Scholar
Collin, R. Calyptraeidae from the northeast Pacific (Gastropoda: Caenogastropoda). Zoosymposia 13, 28. https://doi.org/10.11646/zoosymposia.13.1.12 (2019).
Google Scholar
Phillips, B. T. Beyond the vent: New perspectives on hydrothermal plumes and pelagic biology. Deep-Sea Res. II: Top. Stud. Oceanogr. 137, 480–485. https://doi.org/10.1016/j.dsr2.2016.10.005 (2017).
Google Scholar
Portail, M. et al. Food-web complexity across hydrothermal vents on the Azores triple junction. Deep-Sea Res. I: Oceanogr. Res. Pap. 131, 101–120. https://doi.org/10.1016/j.dsr.2017.11.010 (2018).
Google Scholar
Nomaki, H. et al. Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses. Mar. Ecol. Prog. Ser. 622, 49–65. https://doi.org/10.1016/j.dsr.2017.11.010 (2019).
Google Scholar
Alfaro-Lucas, J. M. et al. High environmental stress and productivity increase functional diversity along a deep-sea hydrothermal vent gradient. Ecology 101, e03144. https://doi.org/10.1002/ecy.3144 (2020).
Google Scholar
Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).
Google Scholar
Michener, R. H. & Kaufman, L. Stable isotope ratios as tracers in marine food webs: An update. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 238–283 (Blackwell Pub, 2007). https://doi.org/10.1002/9780470691854.ch9.
Google Scholar
Montoya, J. P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 176–201 (Blackwell Pub, 2007). https://doi.org/10.1002/9780470691854.ch7.
Google Scholar
Dietl, G. P. First report of cannibalism in Triplofusus giganteus (Gastropoda: Fasciolariidae). Bull. Mar. Sci. 73, 757–761 (2003).
Google Scholar
Cumplido, M., Pappalardo, P., Fernandez, M., Averbuj, A. & Bigatti, G. Embryonic development, feeding and intracapsular oxygen availability in Trophon geversianus (Gastropoda: Muricudae). J. Molluscan. Stud. 77, 429–436. https://doi.org/10.1093/mollus/eyr025 (2011).
Google Scholar
Modica, M. V. & Holford, M. The neogastropoda: Evolutionary innovations of predatory marine snails with remarkable pharmacological potential. In Evolutionary Biology—Concepts, Molecular and Morphological Evolution (ed. Pontarotti, P.) 249–270 (Springer, 2010).
Google Scholar
Sebens, K. P. Recruitment and habitat selection in the intertidal sea anemones, Anthopleura elegantissima (Brandt) and A. xanthogrammica (Brandt). J. Exp. Mar. Biol. Ecol. 59, 103–124. https://doi.org/10.1016/0022-0981(82)90110-1 (1982).
Google Scholar
Naumann, M. S., Orejas, C., Wild, C. & Ferrier-Pages, C. First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J. Exp. Mar. Biol. Ecol. 214, 3570–3576. https://doi.org/10.1242/jeb.061390 (2011).
Google Scholar
Dodds, L. A., Roberts, J. M., Taylor, A. C. & Marubini, F. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J. Exp. Mar. Biol. Ecol. 349, 205–214. https://doi.org/10.1016/j.jembe.2007.05.013 (2007).
Google Scholar
Quesada, A. J., Acuña, F. H. & Cortés, J. Diet of the sea anemone Anthopleura nigrescens: Composition and variation between daytime and nighttime high tides. Zool. Stud. 53, 26. https://doi.org/10.1186/s40555-014-0026-2 (2014).
Google Scholar
Ferrier-Pagès, C., Witting, J., Tambutté, E. & Sebens, K. P. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22, 229–240. https://doi.org/10.1007/s00338-003-0312-7 (2003).
Google Scholar
Teece, M. A., Estes, B., Gelsleichter, E. & Lirman, D. Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnol. Oceanogr. 56, 1285–1296. https://doi.org/10.4319/lo.2011.56.4.1285 (2011).
Google Scholar
Pawlik, J. R. & Deignan, L. K. Cowries graze verongid sponges on Caribbean reefs. Coral Reefs 34, 663. https://doi.org/10.1007/s00338-015-1279-x (2015).
Google Scholar
Chan, B. K. K., Shao, K. T., Shao, Y. T. & Chang, Y. W. A simplified, economical, and robust light trap for capturing benthic and pelagic zooplankton. J. Exp. Mar. Biol. Ecol. 482, 25–32. https://doi.org/10.1016/j.jembe.2016.04.003 (2016).
Google Scholar
Viozzi, M. F., Martinex del Rio, C. & Williner, V. Tissue-specific isotopic incorporation turnover rates and trophic discrimination factors in the freshwater shrimp Macrobrachium borellii (Crustacea: Decapoda: Palaemonidae). Zool. Stud. 60, 28. https://doi.org/10.6620/ZS.2021.60-28 (2021).
Google Scholar
Tixier, P. et al. Importance of toothfish in the diet of generalist subantarctic killer whales: Implications for fisheries interactions. Mar. Ecol. Prog. Ser. 613, 197–210. https://doi.org/10.3354/meps12894 (2019).
Google Scholar
Nolan, E. T., Roberts, C. G. & Britton, R. J. Predicting the contributions of novel marine prey resources from angling and anadromy to the diet of a freshwater apex predator. Freshw. Biol. 64, 1542–1554. https://doi.org/10.1111/fwb.13326 (2019).
Google Scholar
Stock, B. C. & Semmens, B. X. MixSIAR GUI user manual. Version 3.1. 716. https://doi.org/10.5281/zenodo.561 (2016).
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org (2019).
McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).
Google Scholar
Gelman, A. Analysis of variance—why it is more important than ever. Ann. Stat. 33, 1–53. https://doi.org/10.1214/009053604000001048 (2005).
Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (CRC Press, 2014).
Google Scholar
Jackson, A. L., Parnell, A. C., Inger, R. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).
Google Scholar
Source: Ecology - nature.com