Feng, T. et al. Modeling soil erosion using a spatially distributed model in a karst catchment of northwest Guangxi, China. Earth Surf. Process. Landf. 39, 1005 (2015).
Bodoque, J. M. et al. Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. Earth Surf. Process. Landf. 40(9), 1146–1157 (2015).
Google Scholar
Larney, F. J. et al. Erosion–productivity–soil amendment relationships for wheat over 16 years. Soil Tillage Res. 103(1), 73–83 (2009).
Google Scholar
Xiao, H. et al. Response of soil detachment rate to the hydraulic parameters of concentrated flow on steep loessial slopes on the Loess Plateau of China. Hydrol. Process. 31(14), 2613–2621 (2017).
Google Scholar
Wei, W. et al. Effect of rainfall variation and landscape change on runoff and sediment yield from a loess hilly catchment in China. Environ. Earth Sci. 73(3), 1005–1016 (2015).
Google Scholar
Yu, F. A. et al. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Sci. Rev. 191, 12–25 (2019).
Google Scholar
Valmis, S., Dimoyiannis, D. & Danalatos, N. G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece. Soil Tillage Res. 80(1–2), 139–147 (2005).
Google Scholar
Qz, A. et al. Plot-based experimental study of raindrop detachment, interrill wash and erosion-limiting degree on a clayey loessal soil. J. Hydrol. 575, 1280–1287 (2019).
Google Scholar
Dongdong, W. et al. Sheet erosion rates and erosion control on steep rangelands in loess regions: Sheet erosion rates and erosion control on steep rangelands. Earth Surf. Process. Landf. 43, 146 (2018).
Mohammad, A. G. & Adam, M. A. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 81(2), 97–103 (2010).
Google Scholar
Shin, J. Y. et al. Spatial and temporal variations in rainfall erosivity and erosivity density in South Korea. Catena. 176, 125–144 (2019).
Google Scholar
Wang, D. et al. Characterisation of soil erosion and overland flow on vegetation-growing slopes in fragile ecological regions: A review. J. Environ. Manag. 285, 1400 (2021).
Li, Z. W. et al. Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China. Biosyst. Eng. 129, 248–257 (2015).
Google Scholar
Yu, L. et al. Hydrological responses and soil erosion potential of abandoned cropland in the loess plateau, China. Geomorphology 138(1), 404–414 (2012).
Google Scholar
Nearing, M. A., Bradford, J. M. & Parker, S. C. Soil detachment by shallow flow at low slopes. Soil Sci. Soc. Am. J. 55(2), 351–357 (1991).
Google Scholar
Prosser, I. P. & Rustomji, P. Sediment transport capacity relations for overland flow. Prog. Phys. Geogr. 24, 179–193 (2000).
Google Scholar
Yang, C. T. Minimum unit stream power and fluvial hydraulics. J. Hydraul. Div. 102(7), 769–784 (1976).
Zhao, Z. X. & He, J. J. Hydraulics 2nd edn, 193–198 (Springer, 2010).
Zhang, M. et al. The response of soil microbial communities to soil erodibility depends on the plant and soil properties in semiarid regions. Land Degrad. Dev. 7, 14005 (2021).
Zhang, K. L. et al. Soil erodibility and its estimation for agricultural soils in China. Acta Pedol. Sin. 72(6), 1002–1011 (2008).
Long, S. et al. Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China. J. Arid Land. 6(4), 400–409 (2014).
Google Scholar
Zhang, Y. W. et al. Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau. Sci. Rep. 11(1), 1000 (2021).
Google Scholar
Liu, J. et al. Sediment transport capacity and its response to hydraulic parameters in experimental rill flow on steep slope. J. Soil Water Conserv. 70, 36–44 (2018).
Vargas-Luna, A., Crosato, A. & Uijttewaal, W. S. J. Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models. Earth Surf. Process. Landf. 40(2), 157–176 (2015).
Google Scholar
Wang, J. G. et al. Particle size and shape variation of Ultisol aggregates affected by abrasion under different transport distances in overland flow. Catena 123, 153–162 (2014).
Google Scholar
Wang, D. et al. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 535, 473–479 (2016).
Google Scholar
Zhang, B. J. et al. Soil resistance to flowing water erosion of seven typical plant communities on steep gully slopes on the Loess Plateau of China. Catena. 173, 375–383 (2019).
Google Scholar
Maïga-Yaleu, S. B. et al. Impact of sheet erosion mechanisms on organic carbon losses from crusted soils in the Sahel. Catena 126, 60–67 (2015).
Google Scholar
Mo, M. et al. Water and sediment runoff and soil moisture response to grass cover in sloping citrus land, Southern China. Soil Water Res. 14(1), 1004 (2018).
Jin, F. et al. Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Sci. Total Enviro. 773, 10078 (2021).
Google Scholar
Yu, M. et al. Impact of land-use changes on soil hydraulic properties of Calcaric Regosols on the Loess Plateau, NW China. J. Plant Nutr. Soil Sci. 178(3), 486–498 (2018).
Google Scholar
Liu, W. Isotopic indicators of carbon and nitrogen cycles in river catchments during soil erosion in the arid loess plateau of china. Chem. Geol. 296–297, 66–72 (2012).
Google Scholar
Cheng, M. & Shaoshan, A. N. Response of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. J. Arid Land. 7(2), 216–223 (2015).
Google Scholar
Zhang, G. H. et al. Influence of vegetation parameters on runoff and sediment characteristics in patterned Artemisia capillaris plots. J. Arid Land. 2, 1440 (2014).
Hao, H. X. et al. Vegetation restoration and fine roots promote soil infiltrability in heavy-textured soils. Soil Tillage Res. 198, 104542 (2020).
Google Scholar
Chen, Y. et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China. China Appl. Soil Ecol. 170, 104292 (2020).
Google Scholar
Mga, B. et al. Revegetation induced change in soil erodibility as influenced by slope situation on the Loess Plateau. Sci. Total Environ. 2, 158 (2021).
Ma, L. et al. Effects of earthworm (Metaphire guillelmi) density on soil macropore and soil water content in typical Anthrosol soil. Agric. Ecosyst. Environ. 311(5), 107338 (2021).
Google Scholar
Chen, Y. et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China. China Appl. Soil Ecol. 170, 104292 (2020).
Google Scholar
Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 114(7), 1601 (2017).
Google Scholar
Ran, Q., Wang, F. & Gao, J. The effect of storm movement on infiltration, runoff and soil erosion in a semi-arid catchment. Hydrol. Process. 6, 7600 (2020).
Source: Ecology - nature.com