in

The role of epiphytes in seagrass productivity under ocean acidification

  • Cullen-Unsworth, L. C. et al. Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 83, 387–397 (2014).

    CAS 
    Article 

    Google Scholar 

  • Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 158–168 (2014).

    Article 

    Google Scholar 

  • Campagne, C. S., Salles, J.-M., Boissery, P. & Deter, J. The seagrass Posidonia oceanica: ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 97, 391–400 (2015).

    CAS 
    Article 

    Google Scholar 

  • Boudouresque, C. F., Mayot, N. & Pergent, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).

    Google Scholar 

  • Duarte, C. M., Kennedy, H., Marbà, N. & Hendriks, I. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coast. Manag. 83, 32–38 (2013).

    Article 

    Google Scholar 

  • Barrón, C., Duarte, C. M., Frankignoulle, M. & Borges, A. V. Organic carbon metabolism and carbonate dynamics in a mediterranean seagrass (Posidonia oceanica) Meadow. Estuar. Coasts 29, 417–426 (2006).

    Article 

    Google Scholar 

  • Marbà, N., Díaz-Almela, E. & Duarte, C. M. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 176, 183–190 (2014).

    Article 

    Google Scholar 

  • Chefaoui, R. M., Duarte, C. M. & Serrão, E. A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Chang. Biol. 24, 4919–4928 (2018).

    ADS 
    Article 

    Google Scholar 

  • Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).

    ADS 
    Article 

    Google Scholar 

  • Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front Ecol Env. 15, 257–265 (2017).

    Article 

    Google Scholar 

  • Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).

    ADS 
    Article 

    Google Scholar 

  • Zunino, S., Libralato, S., Canu, D. M., Prato, G. & Solidoro, C. Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems. Ecosystems https://doi.org/10.1007/s10021-021-0060 (2021).

    Article 

    Google Scholar 

  • Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    ADS 
    Article 

    Google Scholar 

  • Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19, 103–132 (2013).

    ADS 
    Article 

    Google Scholar 

  • Zimmerman, R. C. et al. Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 566, 1–15 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Egea, L. G., Jimé Nez-Ramos, R., Herná Ndez, I., Bouma, T. J. & Brun, F. G. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations. PLoS ONE https://doi.org/10.1371/journal.pone.0192402 (2018).

    Article 

    Google Scholar 

  • Jiang, Z. J., Huang, X.-P. & Zhang, J.-P. Effects of CO 2 enrichment on photosynthesis, growth, and biochemical composition of seagrass thalassia hemprichii (ehrenb.) aschers. J. Integr. Plant Biol. 52, 904–913 (2010).

    CAS 
    Article 

    Google Scholar 

  • Apostolaki, E. T., Vizzini, S., Hendriks, I. E. & Olsen, Y. S. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar. Environ. Res. 99, 9–15 (2014).

    CAS 
    Article 

    Google Scholar 

  • Hendriks, I. E. et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11, 333–346 (2014).

    ADS 
    Article 

    Google Scholar 

  • Bergstrom, E., Silva, J., Martins, C. & Horta, P. Seagrass can mitigate negative ocean acidification effects on calcifying algae. Sci. Rep. 9(1), 1–11 (2019).

    CAS 
    Article 

    Google Scholar 

  • Hernán, G. et al. Seagrass (Posidonia oceanica) seedlings in a high-CO 2 world: from physiology to herbivory. Sci. Rep. 6(1), 1–12 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • Cox, T. E. et al. Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity. J. Ecol. 103, 1594–1609 (2015).

    CAS 
    Article 

    Google Scholar 

  • Cox, T. E. et al. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences 13, 2179–2194 (2016).

    ADS 
    Article 

    Google Scholar 

  • Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200), 96–99 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mecca, S., Casoli, E., Ardizzone, G. & Gambi, M. C. Effects of ocean acidification on phenology and epiphytes of the seagrass Posidonia oceanica at two CO2 vent systems of Ischia (Italy). Mediterr. Mar. Sci. 21, 70–83 (2020).

    Article 

    Google Scholar 

  • Ugarelli, K., Chakrabarti, S., Laas, P. & Stingl, U. The seagrass holobiont and its microbiome. Microorganisms 5(4), 81 (2017).

    Article 

    Google Scholar 

  • Tarquinio, F., Hyndes, G. A., Laverock, B., Koenders, A. & Säwström, C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 366, 1–15 (2019).

    Article 

    Google Scholar 

  • Brodersen, K. E. & Kühl, M. Effects of Epiphytes on the Seagrass Phyllosphere. Front. Mar. Sci. 9, 1–10 (2022).

    Article 

    Google Scholar 

  • Seymour, J. R., Laverock, B., Nielsen, D. A., M., T.-T. S. & Macreadie, P. I. The Microbiology of Seagrasses. in Seagrasses of Australia 343–392 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-71354-0

  • Ruocco, N. et al. First evidence of Halomicronema metazoicum (Cyanobacteria) free-living on Posidonia oceanica leaves. PLoS ONE 13(10), e0204954 (2018).

    Article 

    Google Scholar 

  • Kohn, T. et al. The microbiome of posidonia oceanica seagrass leaves can be dominated by planctomycetes. Front. Microbiol 11, 1458 (2020).

    Article 

    Google Scholar 

  • Casola, E., Scardi, M., Mazzella, L. & Fresi, E. Structure of the epiphytic community of posidonia oceanica leaves in a shallow meadow. Mar. Ecol. 8, 285–296 (1987).

    ADS 
    Article 

    Google Scholar 

  • Martin, S. et al. Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol. Lett 4, 689–692 (2008).

    Article 

    Google Scholar 

  • Foo, S. A., Byrne, M., Ricevuto, E. & Gambi, M. C. The carbon dioxide vents of Ischia, Italy, a natural system to assess impacts of ocean acidification on marine ecosystems: an overview of research and comparisons with other vent systems. Oceanogr. Mar. Biol. 56, 237–310 (2018).

    Google Scholar 

  • Olivé, I., Silva, J., Costa, M. M. & Santos, R. Estimating seagrass community metabolism using benthic chambers: the effect of incubation time. Estuaries Coasts 39, 138–144 (2016).

    Article 

    Google Scholar 

  • Barrón, C. & Duarte, C. M. Dissolved organic matter release in a Posidonia oceanica meadow. Mar. Ecol. Prog. Ser. 374, 75–84 (2009).

    ADS 
    Article 

    Google Scholar 

  • Langsrud, Ø. ANOVA for unbalanced data: Use Type II instead of Type III sums of squares. Stat. Comput. 13, 163–167 (2003).

    MathSciNet 
    Article 

    Google Scholar 

  • RStudio Team. RStudio. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2021).

  • Donnarumma, L., Lombardi, C., Cocito, S. & Gambi, M. C. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterr. Mar. Sci. 15, 498–509 (2014).

    Article 

    Google Scholar 

  • Gravili, C., Cozzoli, F. & Gambi, M. C. Epiphytic hydroids on Posidonia oceanica seagrass meadows are winner organisms under future ocean acidification conditions: evidence from a CO2 vent system (Ischia Island, Italy). Eur. Zool. J. 88, 472–486 (2021).

    CAS 
    Article 

    Google Scholar 

  • Rodolfo-Metalpa, R., Lombardi, C., Cocito, S., Hall-Spencer, J. M. & Gambi, M. C. Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar. Ecol. 31, 447–456 (2010).

    CAS 

    Google Scholar 

  • Wear, D. J., Sullivan, M. J., Moore, A. D. & Millie, D. F. Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Mar. Ecol. Prog. Ser. 179, 201–213 (1999).

    ADS 
    Article 

    Google Scholar 

  • Hasegawa, N., Hori, M. & Mukai, H. Seasonal shifts in seagrass bed primary producers in a cold-temperate estuary: Dynamics of eelgrass Zostera marina and associated epiphytic algae. Aquat. Bot. 86, 337–345 (2007).

    Article 

    Google Scholar 

  • Piazzi, L., Balata, D. & Ceccherelli, G. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: an overview. Mar. Ecol. 37, 3–41 (2016).

    ADS 
    Article 

    Google Scholar 

  • Celdrán, D., Espinosa, E., Sánchez-Amat, A. & Marín, A. Effects of epibiotic bacteria on leaf growth and epiphytes of the seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 456, 21–27 (2012).

    ADS 
    Article 

    Google Scholar 

  • Brodersen, K. E., Koren, K., Revsbech, N. P. & Kühl, M. Strong leaf surface basification and CO2 limitation of seagrass induced by epiphytic biofilm microenvironments. Plant Cell Environ. 43, 174–187 (2020).

    CAS 
    Article 

    Google Scholar 

  • Noisette, F., Depetris, A., Kühl, M. & Brodersen, K. E. Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass (Zostera marina). J. R. Soc. Interface 17(171), 20200485 (2020).

    Article 

    Google Scholar 

  • Costa, M. M. et al. Epiphytes modulate posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms, and oxidative damage. Front. Mar. Sci. 2, 111 (2015).

    Article 

    Google Scholar 

  • Guilini, K. et al. Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification. PLoS ONE 12(8), e0181531 (2017).

    Article 

    Google Scholar 

  • Palacios, S. L. & Zimmerman, R. C. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344, 1–13 (2007).

    ADS 
    Article 

    Google Scholar 

  • Scartazza, A. et al. Carbon and nitrogen allocation strategy in Posidonia oceanica is altered by seawater acidification. Sci. Total Environ. 607, 954–964 (2017).

    ADS 
    Article 

    Google Scholar 

  • Hansen, A. B., Pedersen, A. S., Kühl, M. & Brodersen, K. E. Temperature Effects on Leaf and Epiphyte Photosynthesis, Bicarbonate Use and Diel O 2 Budgets of the Seagrass Zostera marina L. Front. Mar. Sci. 9, (2022).

  • Burnell, O. W., Russell, B. D., Irving, A. D. & Connell, S. D. Seagrass response to CO2 contingent on epiphytic algae: indirect effects can overwhelm direct effects. Oecologia 1, 871–882 (2014).

    ADS 
    Article 

    Google Scholar 

  • Mabrouk, L., Hamza, A., Brahim, B. & Bradai, M.-N. Variability in the structure of epiphyte assemblages on leaves and rhizomes of Posidonia oceanica in relation to human disturbances in a seagrass meadow off Tunisia. Aquat. Bot. 108, 33–40 (2013).

    Article 

    Google Scholar 

  • Garrard, S. L. et al. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. J. Exp. Mar. Bio. Ecol. 461, 31–38 (2014).

    Article 

    Google Scholar 

  • Touchette, B. W. & Burkholder, J. A. M. Review of nitrogen and phosphorus metabolism in seagrasses. J. Exp. Mar. Bio. Ecol. 250, 133–167 (2000).

    CAS 
    Article 

    Google Scholar 

  • Borg, J. A., Rowden, A. A., Attrill, M. J., Schembri, P. J. & Jones, M. B. Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte. Mar. Biol. 149, 667–677 (2006).

    Article 

    Google Scholar 

  • Teixidó, N. et al. Functional biodiversity loss along natural CO 2 gradients. Nat. Commun. 9(1), 1–9 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Structures considered key to gene expression are surprisingly fleeting

    Looking forward to forecast the risks of a changing climate