in

Oogenesis and lipid metabolism in the deep-sea sponge Phakellia ventilabrum (Linnaeus, 1767)

  • Bergé, J.-P. & Barnathan, G. Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. Biotechnol. 96, 49–125 (2005).

    Google Scholar 

  • Parzanini, C., Parrish, C., Hamel, J. & Mercier, A. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS ONE 13, e0207395 (2018).

    Article 

    Google Scholar 

  • Parrish, C. C. Lipids in marine ecosystems. ISRN Oceanogr. 2013, 1–16 (2013).

    Article 

    Google Scholar 

  • Parrish, C. et al. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In Marine Chemistry. The Handbook of Environmental Chemistry (Vol. 5 Series: Water Pollution) Vol. 5 (ed. Wangersky, P. J.) (Springer, 2000).

    Google Scholar 

  • Laender, F. D., Oevelen, D. V., Frantzen, S., Middelburg, J. J. & Soetaert, K. Seasonal PCB bioaccumulation in an arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration. Environ. Sci. Technol. 44, 356–361 (2010).

    Article 

    Google Scholar 

  • Bianchi, T. & Canuel, E. Chemical Biomarkers in Aquatic Ecosystems (Princeton University Press, 2011).

    Book 

    Google Scholar 

  • Signa, G. et al. Lipid and fatty acid biomarkers as proxies for environmental contamination in caged mussels Mytilus galloprovincialis. Ecol. Indic. 57, 384–394 (2015).

    CAS 
    Article 

    Google Scholar 

  • Brett, M., Mueller-Navarra, D. & Persson, J. Crustacean zooplankton fatty acid composition. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 115–146 (Springer, 2009).

    Chapter 

    Google Scholar 

  • Martin-Creuzburg, D. & Elert, E. Ecological significance of sterols in aquatic food webs. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 43–64 (Springer, 2009).

    Chapter 

    Google Scholar 

  • Parrish, C. Essential fatty acids in aquatic food webs. In Lipids in Aquatic Ecosystem (eds Kainz, M. et al.) 309–326 (Springer, 2009).

    Chapter 

    Google Scholar 

  • Maier, S. R., Bannister, R. J., van Oevelen, D. & Kutti, T. Seasonal controls on the diet, metabolic activity, tissue reserves and growth of the cold-water coral Lophelia pertusa. Coral Reefs 39, 173–187 (2020).

    Article 

    Google Scholar 

  • Phleger, C. F. Buoyancy in marine fishes: Direct and indirect role of lipids. Am. Zool. 38, 321–330 (1998).

    CAS 
    Article 

    Google Scholar 

  • Pond, D. W. & Tarling, G. A. Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol. Oceanogr. 56, 1310–1318 (2011).

    CAS 
    Article 

    Google Scholar 

  • Giese, A. C. Lipids in the economy of marine invertebrates. Physiol. Rev. 46, 244–298 (1966).

    CAS 
    Article 

    Google Scholar 

  • Joseph, J. D. Distribution and composition of lipids in marine invertebrates. In Marine Biogenic Lipids, Fats and Oils (ed. Ackman, R. G.) 49–143 (CRC Press, 1989).

    Google Scholar 

  • Lee, R. F. Lipoproteins from the hemolymph and ovaries of marine invertebrates. In Advances in Comparative and Environmental Physiology (eds Houlihan, D. F. et al.) 187–207 (Springer, 1991).

    Chapter 

    Google Scholar 

  • Kattner, G. & Hagen, W. Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Mar. Ecol. Prog. Ser. 170, 203–213 (1998).

    CAS 
    Article 

    Google Scholar 

  • Heras, H., Pollero, R. J., Gonzalez-Baró, M. R. & Pollero, R. J. Lipid and fatty acid composition and energy partitioning during embryo development in the shrimp Macrobrachium borellii. Lipids 35, 645–651 (2000).

    CAS 
    Article 

    Google Scholar 

  • Viladrich, N. et al. Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35, 1033–1045 (2016).

    Article 

    Google Scholar 

  • Hansen, M., Flatt, T. & Aguilaniu, H. Reproduction, fat metabolism, and lifespan—What is the connection?. Cell Metab. 17, 10–19 (2013).

    CAS 
    Article 

    Google Scholar 

  • Strathmann, R. R. Egg size, larval development, and juvenile size in benthic marine invertebrates. Am. Nat. 111, 373–376 (1977).

    Article 

    Google Scholar 

  • Pechenik, J. Delayed metamorphosis by larvae of benthic marine-invertebrates—Does it occur? Is there a price to pay?. Ophelia 32, 63–94 (1990).

    Article 

    Google Scholar 

  • Harms, J. Larval development and delayed metamorphosis in the hermit crab Clibanarius erythropus (Latreille) (Crustacea, Diogenidae). J. Exp. Mar. Bio. Ecol. 156, 151–160 (1992).

    Article 

    Google Scholar 

  • Harii, S., Kayanne, H., Takigawa, H. T., Hayashibara, T. H. & Yamamoto, M. Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar. Biol. 141, 39–46 (2002).

    Article 

    Google Scholar 

  • Doughty, P. & Shine, R. Detecting life history trade-offs: measuring energy stores in “capital” breeders reveals costs of reproduction. Oecologia 110, 508–513 (1997).

    Article 

    Google Scholar 

  • Coma, R., Ribes, M., Gili, J.-M. & Zabala, M. An energetic approach to the study of life-history traits of two modular colonial benthic invertebrates. Mar. Ecol. Prog. Ser. 162, 89–103 (1998).

    Article 

    Google Scholar 

  • Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): Evidence for summer–autumn feeding constraints. Mar. Biol. 149, 643–651 (2006).

    CAS 
    Article 

    Google Scholar 

  • Kattner, G., Graeve, M. & Hagen, W. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 644, 18119 (1994).

    Google Scholar 

  • Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273–306 (2006).

    CAS 
    Article 

    Google Scholar 

  • Mourente, G., Medina, A., González, S. & Rodríguez, A. Variations in lipid content and nutritional status during larval development of the marine shrimp Penaeus kerathurus. Aquaculture 130, 187–199 (1995).

    CAS 
    Article 

    Google Scholar 

  • Marshall, C. T., Yaragina, N. A., Lambert, Y. & Kjesbu, O. S. Total lipid energy as a proxy for total egg production by fish stocks. Nature 402, 288–290 (1999).

    CAS 
    Article 

    Google Scholar 

  • Marshall, C. T., Yaragina, N. A., Ådlandsvik, B. & Dolgov, A. V. Reconstructing the stock-recruit relationship for Northeast Arctic cod using a bioenergetic index of reproductive potential. Can. J. Fish. Aquat. Sci. 57, 2433–2442 (2000).

    Article 

    Google Scholar 

  • Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. B. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340 (2003).

    Article 

    Google Scholar 

  • Bergquist, P. R., Lawson, M. P., Lavis, A. & Cambie, R. C. Fatty acid composition and the classification of the Porifera. Biochem. Syst. Ecol. 12, 63–84 (1984).

    CAS 
    Article 

    Google Scholar 

  • Djerassi, C. & Lam, W. K. Sponge phospholipids. Acc. Chem. Res. 24, 69–75 (1991).

    CAS 
    Article 

    Google Scholar 

  • Thiel, V. et al. A chemical view of the most ancient metazoa – Biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89, 60–66 (2002).

    CAS 
    Article 

    Google Scholar 

  • Velosaotsy, N. et al. Phospholipid distribution and phospholipid fatty acids in four Saudi red sea sponges. Boll. Mus. Ist. Biol. Univ. Genova 68, 639–645 (2004).

    Google Scholar 

  • Rod’kina, S. A. Fatty acids and other lipids of marine sponges. Russ. J. Mar. Biol. 31, S49–S60 (2005).

    Article 

    Google Scholar 

  • Blumenberg, M. & Michaelis, W. High occurrences of brominated lipid fatty acids in boreal sponges of the order Halichondrida. Mar. Biol. 150, 1153–1160 (2007).

    CAS 
    Article 

    Google Scholar 

  • Genin, E. et al. New trends in phospholipid class composition of marine sponges. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 150, 427–431 (2008).

    Article 

    Google Scholar 

  • Müller, W. et al. Role of the aggregation factor in the regulation of phosphoinositide metabolism in sponges. Possible consequences on calcium efflux and on mitogenesis. J. Biol. Chem. 262, 9850–9858 (1987).

    Article 

    Google Scholar 

  • Weissmann, G., Riesen, W., Davidson, S. & Waite, M. Stimulus-response coupling in marine sponge cell aggregation: Lipid metabolism and the function of exogenously added arachidonic and docosahexaenoic acids. Biochim. Biophys. Acta 960, 351–364 (1988).

    CAS 
    Article 

    Google Scholar 

  • Zivanovic, A., Pastro, N. J., Fromont, J., Thomson, M. & Skropeta, D. Kinase inhibitory, haemolytic and cytotoxic activity of three deep-water sponges from North Western Australia and their fatty acid composition. Nat. Prod. Commun. 6, 1921–1924 (2011).

    CAS 

    Google Scholar 

  • Shaaban, M., Abd-Alla, H. I., Hassan, A. Z., Aly, H. F. & Ghani, M. A. Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes. Org. Med. Chem. Lett. 2, 30 (2012).

    Article 

    Google Scholar 

  • Botić, T. et al. Fatty acid composition and antioxidant activity of Antarctic marine sponges of the genus Latrunculia. Polar Biol. 38, 1605–1612 (2015).

    Article 

    Google Scholar 

  • Bennett, H., Bell, J. J., Davy, S. K., Webster, N. S. & Francis, D. S. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Glob. Chang. Biol. 24, 3130–3144 (2018).

    Article 

    Google Scholar 

  • Carballeira, N. M. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 47, 50–61 (2008).

    CAS 
    Article 

    Google Scholar 

  • Kikuchi, H. et al. Marine natural products. X. Pharmacologically active glycolipids from the Okinawan marine sponge Phyllospongia foliascens (Pallas). Chem. Pharm. Bull. (Tokyo) 30, 3544–3547 (1982).

    CAS 
    Article 

    Google Scholar 

  • Natori, T., Morita, M., Akimoto, K. & Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50, 2771–2784 (1994).

    CAS 
    Article 

    Google Scholar 

  • Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M. & Ianaro, A. Glycolipids from Sponges. 6. Plakoside A and B, two unique prenylated glycosphingolipids with Immunosuppressive activity from the marine sponge Plakortis simplex. J. Am. Chem. Soc. 119, 12465–12470 (1997).

    CAS 
    Article 

    Google Scholar 

  • Costantino, V., Fattorusso, E., Imperatore, C. & Mangoni, A. Glycolipids from sponges. 11. Isocrasserides, novel glycolipids with a five-membered cyclitol widely distributed in marine sponges. J. Nat. Prod. 65, 883–886 (2002).

    CAS 
    Article 

    Google Scholar 

  • Maldonado, M. & Riesgo, A. Reproduction in Porifera: a synoptic overview. Treballs la Soc. Catalana Biol. 59, 29–49 (2008).

    Google Scholar 

  • Sciscioli, M., Lepore, E., Scalera-Liaci, L. & Gherardi, M. Indagine ultrastrutturale sugli ovociti di Erylus discophorus (Schmidt) (Porifera, Tetractinellida). Oebalia 15, 939–941 (1989).

    Google Scholar 

  • Sciscioli, M., Liaci, L. S., Lepore, E., Gherardi, M. & Simpson, T. L. Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (porifera demospongiae). Mol. Reprod. Dev. 28, 346–350 (1991).

    CAS 
    Article 

    Google Scholar 

  • Riesgo, A. et al. Some like it fat: comparative ultrastructure of the embryo in two demosponges of the genus Mycale (order Poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10, e0118805 (2015).

    Article 

    Google Scholar 

  • Watanabe, Y. The development of two species of Tetilla (Demosponge). NSR. O. U. 29, 71–106 (1978).

    Google Scholar 

  • Gaino, E. & Sarà, M. An ultrastructural comparative study of the eggs of two species of Tethya (Porifera, Demospongiae). Invertebr. Reprod. Dev. 26, 99–106 (1994).

    Article 

    Google Scholar 

  • Maldonado, M. & Riesgo, A. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar. Biol. 156, 2181–2197 (2009).

    Article 

    Google Scholar 

  • Lanna, E. & Klautau, M. Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology 129, 249–261 (2010).

    Article 

    Google Scholar 

  • Koutsouveli, V. et al. Insights into the reproduction of some Antarctic dendroceratid, poecilosclerid, and haplosclerid demosponges. PLoS ONE 13, 1–24 (2018).

    Article 

    Google Scholar 

  • Fell, P. E. The involvement of nurse cells in oogenesis and embryonic development in the marine sponge, Haliclona ecbasis. J. Morphol. 127, 133–149 (1969).

    Article 

    Google Scholar 

  • Simpson, T. The Cell Biology of Sponges (Springer, 1984).

    Book 

    Google Scholar 

  • Bellairs, R. The structure of the yolk of the hen’s egg as studied by electron microscopy : i. The yolk of the unincubated egg. J. Biophys. Biochem. Cytol. 11, 207–225 (1961).

    CAS 
    Article 

    Google Scholar 

  • Ereskovsky, A. The Comparative Embryology of Sponges (Springer, 2010).

    Book 

    Google Scholar 

  • Sarà, A., Cerrano, C. & Sarà, M. Viviparous development in the Antarctic sponge Stylocordyla borealis Loven, 1868. Polar Biol. 25, 425–431 (2002).

    Article 

    Google Scholar 

  • Busch, K. et al. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages. Front. Mar. Sci. 7, 674 (2020).

    Article 

    Google Scholar 

  • Koopmans, M. et al. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: Biomarkers in sponges identified. Mar. Biotechnol. 17, 43–54 (2015).

    CAS 
    Article 

    Google Scholar 

  • Lüskow, F. et al. Seasonality in lipid content of the demosponges Halichondria panicea and H. bowerbanki at two study sites in temperate Danish waters. Front. Mar. Sci. 6, 1–7 (2019).

    Article 

    Google Scholar 

  • Reiswig, H. Population dynamics of three Jamaican demospongiae. Bull. Mar. Sci. 23, 191–226 (1973).

    Google Scholar 

  • Elvin, D. W. Seasonal growth and reproduction of an intertidal sponge, Haliclona permollis (Bowerbank). Univ. Chicago Press 151, 108–125 (1976).

    Google Scholar 

  • Elvin, D. W. The relationship of seasonal changes in the biochemical components to the reproductive behavior of the intertidal sponge, Haliclona permollis. Biol Bull. 156, 47–61 (1979).

    CAS 
    Article 

    Google Scholar 

  • Barthel, D. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. I. Substrate specificity, growth and reproduction. Mar. Ecol. Prog. Ser. 32, 291–298 (1986).

    Article 

    Google Scholar 

  • Ivanisevic, J., Pérez, T., Ereskovsky, A. V., Barnathan, G. & Thomas, O. P. Lysophospholipids in the Mediterranean sponge Oscarella tuberculata: Seasonal variability and putative biological role. J. Chem. Ecol. 37, 537 (2011).

    CAS 
    Article 

    Google Scholar 

  • Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (Porifera, demospongiae) at the Faroe islands, North-eastern Atlantic. Sarsia 80, 1–22 (1995).

    Article 

    Google Scholar 

  • Klitgaard, A. B. & Tendal, O. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).

    Article 

    Google Scholar 

  • Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA—Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).

    Article 

    Google Scholar 

  • Pile, A. & Young, C. The natural diet of a hexactinellid sponge: Benthic–pelagic coupling in a deep-sea microbial food web. Deep Sea Res. Part I Oceanogr. Res. Pap. 53, 1148–1156 (2006).

    Article 

    Google Scholar 

  • Yahel, G., Whitney, F., Reiswig, H. M., Eerkes-Medrano, D. I. & Leys, S. P. In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol. Oceanogr. 52, 428–440 (2007).

    CAS 
    Article 

    Google Scholar 

  • Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).

    CAS 
    Article 

    Google Scholar 

  • Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 1–12 (2015).

    Article 

    Google Scholar 

  • Kahn, A., Yahel, G., Chu, J., Tunnicliffe, V. & Leys, S. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60, 78–88 (2015).

    Article 

    Google Scholar 

  • Rooks, C. et al. Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges. Biogeosciences 17, 1231–1245 (2020).

    CAS 
    Article 

    Google Scholar 

  • Koutsouveli, V., Cárdenas, P., Conejero, M., Rapp, H. T. & Riesgo, A. Reproductive biology of Geodia species (Porifera, Tetractinellida) from Boreo-Arctic North-Atlantic Deep-Sea Sponge Grounds. Front. Mar. Sci. 7, 1–22 (2020).

    Article 

    Google Scholar 

  • Reynolds, E. S. The use of lead citrate at high PH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    CAS 
    Article 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    Article 

    Google Scholar 

  • Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS 
    Article 

    Google Scholar 

  • Balgoma, D. et al. Anabolic androgenic steroids exert a selective remodeling of the plasma lipidome that mirrors the decrease of the de novo lipogenesis in the liver. Metabolomics 16, 12 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kolmert, J. et al. Prominent release of lipoxygenase generated mediators in a murine house dust mite-induced asthma model. Prostaglandins Other Lipid Mediat. 137, 20–29 (2018).

    CAS 
    Article 

    Google Scholar 

  • Balgoma, D. et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur. Respir. J. 47, 1645–1656 (2016).

    CAS 
    Article 

    Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    CAS 
    Article 

    Google Scholar 

  • Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 9, 504 (2008).

    Article 

    Google Scholar 

  • Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007).

    Article 

    Google Scholar 

  • Böcker, S., Letzel, M. C., Lipták, Z. & Pervukhin, A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 25, 218–224 (2008).

    Article 

    Google Scholar 

  • Koutsouveli, V. et al. The molecular machinery of gametogenesis in Geodia demosponges (Porifera): Evolutionary origins of a conserved toolkit across animals. Mol. Biol. Evol. 37, 3485–3506 (2020).

    CAS 
    Article 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    Article 

    Google Scholar 

  • Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome assembly from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    Article 

    Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    Article 

    Google Scholar 

  • Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    CAS 
    Article 

    Google Scholar 

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).

    Article 

    Google Scholar 

  • McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    CAS 
    Article 

    Google Scholar 

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS 
    Article 

    Google Scholar 

  • Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    CAS 
    Article 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59 (2014).

    Article 

    Google Scholar 

  • Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS 
    Article 

    Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    Article 

    Google Scholar 

  • Busch, K. et al. Population connectivity of fan-shaped sponge holobionts in the deep Cantabrian Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 167, 103427 (2020).

    Article 

    Google Scholar 

  • Southwood, T. R. Habitat, the templet for ecological strategies. J. Anim. Ecol. 46, 336–365 (1977).

    Article 

    Google Scholar 

  • Clarke, A. A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol. J. Linn. Soc. 14, 77–92 (1980).

    Article 

    Google Scholar 

  • Witte, U. Seasonal reproduction in deep-sea sponges—Triggered by vertical particle flux?. Mar. Biol. 124, 571–581 (1996).

    Article 

    Google Scholar 

  • Spetland, F., Rapp, H. T., Hoffmann, F. & Tendal, O. S. Sexual reproduction of Geodia barretti Bowerbank, 1858 (Porifera, Astrophorida) in two Scandinavian fjords. In Porifera Research: Biodiversity, Innovation, Sustainability Vol. 1858 (eds Custódio, M. et al.) 613–620 (Série Livros. Museu Nacional, 2007).

    Google Scholar 

  • Wassmann, P. Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanogr. Mar. Biol. Annu. Rev. 29, 87–154 (1991).

    Google Scholar 

  • Wassmann, P., Svendsen, H., Keck, A. & Reigstad, M. Selected aspects of the physical oceanography and particle fluxes in fjords of northern Norway. J. Mar. Syst. 8, 53–71 (1996).

    Article 

    Google Scholar 

  • Bamstedt, U. Life cycle, seasonal vertical distribution and feeding of Calanus finmarchicus in Skagerrak coastal water. Mar. Biol. 137, 279–289 (2000).

    Article 

    Google Scholar 

  • Eckelbarger, K. J. & Watling, L. Role of phylogenetic constraints in determining reproductive patterns in deep-sea invertebrates. Invertebr. Biol. 114, 256–269 (1995).

    Article 

    Google Scholar 

  • Riesgo, A. & Maldonado, M. Ultrastructure of oogenesis of two oviparous demosponges: Axinella damicornis and Raspaciona aculeata (Porifera). Tissue Cell 41, 51–65 (2009).

    Article 

    Google Scholar 

  • Whiteley, N. M., Taylor, E. W. & el Haj, A. J. A comparison of the metabolic cost of protein synthesis in stenothermal and eurythermal isopod crustaceans. Am. J. Physiol. 271, R1295–R1303 (1996).

    CAS 
    Article 

    Google Scholar 

  • Pace, D. A. & Manahan, D. T. Cost of protein synthesis and energy allocation during development of Antarctic sea urchin embryos and larvae. Biol. Bull. 212, 115–129 (2007).

    CAS 
    Article 

    Google Scholar 

  • Sciscioli, M., Lepore, E., Gherardi, M. & Liaci, L. S. Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demosponsgiae): An ultrastructural study. Cah. Biol. Mar. 35, 471–478 (1994).

    Google Scholar 

  • McWilliams, S. R., Guglielmo, C., Pierce, B. & Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 35, 377–393 (2004).

    Article 

    Google Scholar 

  • Derickson, W. K. Lipid storage and utilization in reptiles. Am. Zool. 16, 711–723 (1976).

    CAS 
    Article 

    Google Scholar 

  • Fraser, A. J. Triacylglycerol content as a condition index for fish, bivalve, and crustacean larvae. Can. J. Fish. Aquat. Sci. 46, 1868–1873 (1989).

    CAS 
    Article 

    Google Scholar 

  • Bonnet, X., Naulleau, G. & Mauget, R. The influence of body condition on 17-beta estradiol levels in relation to vitellogenesis in female Vipera aspis (Reptilia, Viperidae). Gen. Comp. Endocrinol. 93, 424–437 (1994).

    CAS 
    Article 

    Google Scholar 

  • Duggan, A. et al. Seasonal variation in plasma lipids, lipoproteins, apolipoprotein A-I and vitellogenin in the freshwater turtle, Chrysemys picta. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130, 253–269 (2001).

    CAS 
    Article 

    Google Scholar 

  • Lance, V. A., Place, A. R., Grumbles, J. S. & Rostal, D. C. Variation in plasma lipids during the reproductive cycle of male and female desert tortoises, Gopherus agassizii. J. Exp. Zool. 293, 703–711 (2002).

    CAS 
    Article 

    Google Scholar 

  • Kawazu, I. et al. Signals of vitellogenesis and estrus in female hawksbill turtles. Zoolog. Sci. 32, 114–118 (2015).

    Article 

    Google Scholar 

  • Teshima, S. & Kanazawa, A. Variation in lipid compositions during the ovarian maturation of the prawn. Nippon Suisan Gakkaishi 49, 957–962 (1983).

    CAS 
    Article 

    Google Scholar 

  • Clarke, A., Brown, J. H. & Holmes, L. J. The biochemical composition of eggs from Macrobrachium rosenbergii in relation to embryonic development. Comp. Biochem. Physiol. Part B Comp. Biochem. 96, 505–511 (1990).

    Article 

    Google Scholar 

  • Allen, W. Amino acid and fatty acid composition of tissues of the dungeness crab (Cancer magister). J. Fish. Res. Board Canada 28, 1191–1195 (1971).

    CAS 
    Article 

    Google Scholar 

  • Rosa, R. & Nunes, M. L. Tissue biochemical composition in relation to the reproductive cycle of deep-sea decapod Aristeus antennatus in the Portuguese south coast. J. Mar. Biol. Assoc. U. K. 83, 963–970 (2003).

    CAS 
    Article 

    Google Scholar 

  • Balgoma, D., Pettersson, C. & Hedeland, M. Common fatty markers in diseases with dysregulated lipogenesis. Trends Endocrinol. Metab. 30, 283–285 (2019).

    CAS 
    Article 

    Google Scholar 

  • Kent, C. Eukaryotic phospholipid biosynthesis. Annu. Rev. Biochem. 64, 315–343 (1995).

    CAS 
    Article 

    Google Scholar 

  • Coleman, R. A. & Lee, D. P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176 (2004).

    CAS 
    Article 

    Google Scholar 

  • Bell, R. M. & Coleman, R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 49, 459–487 (1980).

    CAS 
    Article 

    Google Scholar 

  • Mathews, C., van Holde, K., Appling, D. & Anthony-Cahill, S. Biochemistry (Pearson, 2019).

    Google Scholar 

  • Gavaud, J. Histochemical identification of ovarian lipids during vitellogenesis in the lizard Lacerta vivipara. Can. J. Zool. 69, 1389–1392 (1991).

    Article 

    Google Scholar 

  • Chapman, M. J. Animal lipoproteins: Chemistry, structure, and comparative aspects. J. Lipid Res. 21, 789–853 (1980).

    CAS 
    Article 

    Google Scholar 

  • Lebouvier, M., Miramón-Puértolas, P. & Steinmetz, P.R. Evolutionary conserved aspects of animal nutrient uptake and transport in sea anemone vitellogenesis. bioRxiv (2022).

  • Dolphin, P. J., Ansari, A. Q., Lazier, C. B., Munday, K. A. & Akhtar, M. Studies on the induction and biosynthesis of vitellogenin, an oestrogen-induced glycolipophosphoprotein. Biochem. J. 124, 751–758 (1971).

    CAS 
    Article 

    Google Scholar 

  • Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. & Leys, S. P. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31, 1102–1120 (2014).

    CAS 
    Article 

    Google Scholar 

  • Wanders, R. J. A. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 83, 16–27 (2004).

    CAS 
    Article 

    Google Scholar 

  • Wanders, R. J. A., Waterham, H. R. & Ferdinandusse, S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front. Cell Dev. Biol. 3, 83 (2016).

    Article 

    Google Scholar 

  • Talley, J. & Mohiuddin, S. Biochemstry, Fatty Acid Oxidation (StatPearls, 2020).

    Google Scholar 

  • Reiswig, H. M. Particle feeding in natural populations of three marine demosponges. Biol. Bull. 141, 568–591 (1971).

    Article 

    Google Scholar 

  • Sugimoto, Y., Inazumi, T. & Tsuchiya, S. Roles of prostaglandin receptors in female reproduction. J. Biochem. 157, 73–80 (2015).

    CAS 
    Article 

    Google Scholar 

  • Niringiyumukiza, J. D., Cai, H. & Xiang, W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod. Biol. Endocrinol. 16, 43 (2018).

    Article 

    Google Scholar 

  • Kaczynski, P., Baryla, M., Goryszewska, E., Bauersachs, S. & Waclawik, A. Prostaglandin F2α promotes embryo implantation and development in the pig. Reproduction 156, 405–419 (2018).

    CAS 

    Google Scholar 

  • De Petrocellis, L. & Di Marzo, V. Aquatic invertebrates open up new perspectives in eicosanoid research: Biosynthesis and bioactivity. Prostaglandins Leukot. Essent. Fat. Acids 51, 215–229 (1994).

    Article 

    Google Scholar 

  • Destephano, D. B. & Brady, U. E. Prostaglandin and prostaglandin synthetase in the cricket, Acheta domesticus. J. Insect Physiol. 23, 905–911 (1977).

    CAS 
    Article 

    Google Scholar 

  • Rich, A. M. et al. Calcium dependent aggregation of marine sponge cells is provoked by leukotriene B4 and inhibited by inhibitors of arachidonic acid oxidation. Biochem. Biophys. Res. Commun. 121, 863–870 (1984).

    CAS 
    Article 

    Google Scholar 

  • Gramzow, M. et al. Role of phospholipase A2 in the stimulation of sponge cell proliferation by homologous lectin. Cell 59, 939–948 (1989).

    CAS 
    Article 

    Google Scholar 

  • Nomura, T. & Ogata, H. Distribution of prostagladins in the animal kingdom. Biochim. Biophys. Acta 431, 127–131 (1976).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Structures considered key to gene expression are surprisingly fleeting

    Looking forward to forecast the risks of a changing climate