Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).
Google Scholar
Harmon, M. E. et al. Ecology of coarse woody debris in temperate ecosystems. In Advances in Ecological Research (eds MacFadyen, A. & Ford, E. D.) 133–302 (Academic Press, 1986).
Google Scholar
Harmon, M. E. & Bell, D. M. Mortality in forested ecosystems: suggested conceptual advances. Forests 11, 572 (2020).
Google Scholar
van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the Western United States. Science 323, 521–524 (2009).
Google Scholar
Kinnucan, H. W. Timber price dynamics after a natural disaster: Hurricane Hugo revisited. J. For. Econ. 25, 115–129 (2016).
Marsinko, A. P., Straka, T. J. & Haight, R. G. The effect of a large-scale natural disaster on regional timber supply. J. World For. Resour. Manag. 8, 75–85 (1997).
Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecol. 33, 368–398 (2008).
Google Scholar
Shifley, S. R., Brookshire, B. L., Larsen, D. R. & Herbeck, L. A. Snags and down wood in missouri old-growth and mature second-growth forests. North. J. Appl. For. 14, 165–172 (1997).
Google Scholar
Bobiec, A. Living stands and dead wood in the Białowieża forest: suggestions for restoration management. For. Ecol. Manag. 165, 125–140 (2002).
Google Scholar
Spetich, M. A., Shifley, S. R. & Parker, G. R. Regional distribution and dynamics of coarse woody debris in midwestern old-growth forests. For. Sci. 45, 302–313 (1999).
Rimle, A., Heiri, C. & Bugmann, H. Deadwood in Norway spruce dominated mountain forest reserves is characterized by large dimensions and advanced decomposition stages. For. Ecol. Manag. 404, 174–183 (2017).
Google Scholar
Ruokolainen, A., Shorohova, E., Penttilä, R., Kotkova, V. & Kushnevskaya, H. A continuum of dead wood with various habitat elements maintains the diversity of wood-inhabiting fungi in an old-growth boreal forest. Eur. J. For. Res. 137, 707–718 (2018).
Google Scholar
Ranius, T. & Kindvall, O. Modelling the amount of coarse woody debris produced by the new biodiversity-oriented silvicultural practices in Sweden. Biol. Conserv. 119, 51–59 (2004).
Google Scholar
Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Conserv. 118, 281–299 (2004).
Google Scholar
Svensson, M. et al. The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecol. 20, 166–174 (2016).
Google Scholar
Bahuguna, D., Mitchell, S. J. & Nishio, G. R. Post-harvest windthrow and recruitment of large woody debris in riparian buffers on Vancouver Island. Eur. J. For. Res. 131, 249–260 (2012).
Google Scholar
Fortin, M. & DeBlois, J. Modeling tree recruitment with zero-inflated models: the example of hardwood stands in southern Quebec Canada. For. Sci. 53, 529–539 (2007).
Herrero, C., Pando, V. & Bravo, F. Modelling coarse woody debris in Pinus spp. Plantations. A case study in Northern Spain. Ann. For. Sci. 67, 708–708 (2010).
Google Scholar
Arekhi, S. Modeling spatial pattern of deforestation using GIS and logistic regression: a case study of northern Ilam forests, Ilam province Iran. Afr. J. Biotechnol. 10, 16236–16249 (2011).
Kumar, R., Nandy, S., Agarwal, R. & Kushwaha, S. P. S. Forest cover dynamics analysis and prediction modeling using logistic regression model. Ecol. Indic. 45, 444–455 (2014).
Google Scholar
Podur, J. J., Martell, D. L. & Stanford, D. A compound poisson model for the annual area burned by forest fires in the province of Ontario. Environmetrics 21, 457–469 (2010).
Google Scholar
Tobler, W. R. A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46, 234–240 (1970).
Google Scholar
Griffith, D. & Chun, Y. Spatial autocorrelation and spatial filtering. In Handbook of regional science 1477–1507 (eds Fischer, M. M. & Nijkamp, P.) (Springer, 2014). https://doi.org/10.1007/978-3-642-23430-9_72.
Google Scholar
Li, T. & Meng, Q. Forest dynamics in relation to meteorology and soil in the Gulf Coast of Mexico. Sci. Total Environ. 702, 134913 (2019).
Google Scholar
Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).
Google Scholar
Fotheringham, A. S., Charlton, M. E. & Brunsdon, C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 30, 1905–1927 (1998).
Google Scholar
Yang, C., Fu, M., Feng, D., Sun, Y. & Zhai, G. Spatiotemporal changes in vegetation cover and its influencing factors in the loess Plateau of China based on the geographically weighted regression model. Forests 12, 673 (2021).
Google Scholar
Monjarás-Vega, N. et al. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Sci. Total Environ. 718, 137313 (2020).
Google Scholar
Peng, X., Wu, H. & Ma, L. A study on geographically weighted spatial autoregression models with spatial autoregressive disturbances. Commun. Stat. Theor. Methods 49, 5235–5251 (2020).
Google Scholar
Harris, P. & Brunsdon, C. Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for Great Britain using geographically weighted summary statistics. Comput. Geosci. 36, 54–70 (2010).
Google Scholar
Li, J., Jin, M. & Li, H. Exploring spatial influence of remotely sensed PM2.5 concentration using a developed deep convolutional neural network model. Int. J. Environ. Res. Public Health 16, 454 (2019).
Google Scholar
Peng, C., Wang, M. & Chen, W. Spatial analysis of PAHs in soils along an urban-suburban-rural gradient: scale effect, distribution patterns, diffusion and influencing factors. Sci. Rep. 6, 37185 (2016).
Google Scholar
Wu, S. et al. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships. Int. J. Geogr. Inf. Sci. 35, 582–608 (2021).
Google Scholar
Wu, S. et al. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression. Sci. Total Environ. 709, 136097 (2020).
Google Scholar
Du, Z., Wang, Z., Wu, S., Zhang, F. & Liu, R. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity. Int. J. Geogr. Inf. Sci. 34, 1353–1377 (2020).
Google Scholar
Sun, Y., Ao, Z., Jia, W., Chen, Y. & Xu, K. A geographically weighted deep neural network model for research on the spatial distribution of the down dead wood volume in liangshui national nature reserve (China). IForest 14, 353–361 (2021).
Google Scholar
Wilkinson, L. Tests of significance in stepwise regression. Psychol. Bull. 86, 168–174 (1979).
Google Scholar
Henderson, D. A. & Denison, D. R. Stepwise regression in social and psychological research. Psychol. Rep. 64, 251–257 (1989).
Google Scholar
Carl, G. & Kühn, I. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol. Model. 207, 159–170 (2007).
Google Scholar
Wu, W. & Zhang, L. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62 (2013).
Google Scholar
Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 405, 123–136 (2011).
Google Scholar
Pineda Jaimes, N. B., Bosque Sendra, J., Gómez Delgado, M. & Franco, Plata R. Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Appl. Geogr. 30, 576–591 (2010).
Google Scholar
Tutmez, B., Kaymak, U., Erhan Tercan, A. & Lloyd, C. D. Evaluating geo-environmental variables using a clustering based areal model. Comput. Geosci. 43, 34–41 (2012).
Google Scholar
Li, X., Wu, P., Guo, F.-T. & Hu, X. A geographically weighted regression approach to detect divergent changes in the vegetation activity along the elevation gradients over the last 20 years. For. Ecol. Manag. 490, 119089 (2021).
Google Scholar
Que, X., Ma, C., Ma, X. & Chen, Q. Parallel computing for fast spatiotemporal weighted regression. Comput. Geosci. 150, 104723 (2021).
Google Scholar
Wu, L. et al. Spatial analysis of severe fever with thrombocytopenia syndrome virus in China using a geographically weighted logistic regression model. Int. J. Environ. Res. Public Health 13, 1125 (2016).
Google Scholar
Liu, Y. et al. Geographical variations in maternal lifestyles during pregnancy associated with congenital heart defects among live births in Shaanxi province Northwestern China. Sci. Rep. 10, 12958 (2020).
Google Scholar
Saefuddin, A., Saepudin, D. & Kusumaningrum, D. Geographically weighted poisson regression (GWPR) for analyzing the malnutrition data in java-Indonesia (European Regional Science Association (ERSA), 2013).
Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Google Scholar
Ketkar, N. Introduction to Keras. In Deep learning with python: a hands-on introduction (ed. Ketkar, N.) 97–111 (Apress, 2017). https://doi.org/10.1007/978-1-4842-2766-4_7.
Google Scholar
Tsomokos, D. I., Ashhab, S. & Nori, F. Fully connected network of superconducting qubits in a cavity. New J. Phys. 10, 113020 (2008).
Google Scholar
Hu, T. et al. Study on the estimation of forest volume based on multi-source data. Sensors 21, 7796 (2021).
Google Scholar
Chen, L., Ren, C., Zhang, B., Wang, Z. & Xi, Y. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests 9, 582 (2018).
Google Scholar
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
Google Scholar
Mastromichalakis, S. ALReLU: A different approach on Leaky ReLU activation function to improve neural networks performance. arXiv:2012.07564 [Cs] arXiv:2012.07564 (2021).
Chen, C., Li, Y., Yan, C., Dai, H. & Liu, G. A robust algorithm of multiquadric method based on an improved huber loss function for interpolating remote-sensing-derived elevation data sets. Remote Sens. 7, 3347–3371 (2015).
Google Scholar
de Jong, P., Sprenger, C. & Veen, F. On extreme values of Moran’s I and Geary’s c ( spatial autocorrelation). Geogr. Anal. 16, 17–24 (1984).
Google Scholar
Fu, W. J., Jiang, P. K., Zhou, G. M. & Zhao, K. L. Using Moran’s i and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 11, 2401–2409 (2014).
Google Scholar
Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B. & Simmons, C. T. Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran. Sci. Rep. 10, 17473 (2020).
Google Scholar
Moore, J. R. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. For. Ecol. Manag. 135, 63–71 (2000).
Google Scholar
Lanquaye-Opoku, N. & Mitchell, S. J. Portability of stand-level empirical windthrow risk models. For. Ecol. Manag. 216, 134–148 (2005).
Google Scholar
Li, X. et al. Response of species and stand types to snow/wind damage in a temperate secondary forest Northeast China. J. For. Res. 29, 395–404 (2018).
Google Scholar
Zhen, Z. et al. Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Appl. Geogr. 37, 114–126 (2013).
Google Scholar
Vozmishcheva, A. et al. Strong disturbance impact of tropical cyclone Lionrock (2016) on Korean pine-broadleaved forest in the Middle Sikhote-Alin Mountain range Russian Far East. Forests 10, 15 (2019).
Google Scholar
Bivand, R., Müller, W. G. & Reder, M. Power calculations for global and local Moran’s I. Comput. Stat. Data Anal. 53, 2859–2872 (2009).
Google Scholar
Yuan, J. et al. Dynamics of coarse woody debris characteristics in the Qinling mountain forests in China. Forests 8, 403–403 (2017).
Google Scholar
Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 61, 246–253 (1997).
Google Scholar
Næsset, E. Determination of mean tree height of forest stands by digital photogrammetry. Scand. J. For. Res. 17, 446–459 (2002).
Google Scholar
Rich, R. L., Frelich, L. E. & Reich, P. B. Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J. Ecol. 95, 1261–1273 (2007).
Google Scholar
Odhiambo, B. O., Kenduiywo, B. K. & Were, K. Spatial prediction and mapping of soil pH across a tropical afro-montane landscape. Appl. Geogr. 114, 102129 (2020).
Google Scholar
Source: Ecology - nature.com