Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (D. Appleton and Company, 1877).
Charlesworth, D. Androdioecy and the evolution of dioecy. Biol. J. Linn Soc. 22, 333–348 (1984).
Google Scholar
Charlesworth, D., Morgan, M. T. & Charlesworth, B. Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44, 1469–1489 (1990).
Google Scholar
Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40 (1985).
Weeks, S. C. When males and hermaphrodites coexist: a review of androdioecy in animals. Integr. Comp. Biol. 46, 449–464 (2006).
Google Scholar
Pannell, J. The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51, 10–20 (1997).
Google Scholar
Wolf, D. E. & Takebayashi, N. Pollen limitation and the evolution of androdioecy from dioecy. Am. Nat. 163, 122–137 (2004).
Google Scholar
Charlesworth, D. Theories of the evolution of dioecy. In Gender and Sexual Dimorphism in Flowering Plants (eds Geber, M. A. et al.) 33–60 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-662-03908-3_2.
Google Scholar
Denver, D. R., Clark, K. A. & Raboin, M. J. Reproductive mode evolution in nematodes: insights from molecular phylogenies and recently discovered species. Mol. Phylogenetics Evol. 61, 584–592 (2011).
Google Scholar
Pires-daSilva, A. Evolution of the control of sexual identity in nematodes. Semin. Cell Dev. Biol. 18, 362–370 (2007).
Google Scholar
Kanzaki, N. et al. Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution. Sci. Rep. 7, 11135 (2017).
Google Scholar
Tandonnet, S. et al. Sex- and gamete-specific patterns of X chromosome segregation in a trioecious nematode. Curr. Biol. 28, 93-99.e3 (2018).
Google Scholar
Chaudhuri, J. et al. Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci. Rep. 5, 17676 (2015).
Google Scholar
Félix, M.-A. Alternative morphs and plasticity of vulval development in a rhabditid nematode species. Dev. Genes Evol. 214, 55–63 (2004).
Google Scholar
Shakes, D. C., Neva, B. J., Huynh, H., Chaudhuri, J. & Pires-daSilva, A. Asymmetric spermatocyte division as a mechanism for controlling sex ratios. Nat. Commun. 2, 157 (2011).
Google Scholar
Winter, E. S. et al. Cytoskeletal variations in an asymmetric cell division support diversity in nematode sperm size and sex ratios. Development 144, 3253–3263 (2017).
Google Scholar
Robles, P. et al. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. BMC Biol. 19, 102 (2021).
Google Scholar
Zuco, G. et al. Sensory neurons control heritable adaptation to stress through germline reprogramming. bioRxiv 406033 (2018) https://doi.org/10.1101/406033.
Colegrave, N., Kaltz, O. & Bell, G. The ecology and genetics of fitness in chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56, 14–21 (2002).
Google Scholar
Goddard, M. R., Godfray, H. C. J. & Burt, A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434, 636–640 (2005).
Google Scholar
Gray, J. C. & Goddard, M. R. Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evol. Biol. 12, 43 (2012).
Google Scholar
Poon, A. & Chao, L. Drift increases the advantage of sex in RNA bacteriophage ⌽6. Genetics 166, 19 (2004).
Google Scholar
Stewart, A. D. & Phillips, P. C. Selection and maintenance of androdioecy in Caenorhabditis elegans. Genetics 160, 975–982 (2002).
Google Scholar
Stiernagle, T. Maintenance of C. elegans. WormBook: The Online Review of C. elegans Biology (WormBook, 2006).
Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993).
Google Scholar
Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246 (1991).
Google Scholar
Lenth, R. V. Emmeans: estimated marginal means, aka least-squares means (2021).
Lipton, J., Kleemann, G., Ghosh, R., Lints, R. & Emmons, S. W. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J. Neurosci. 24, 7427–7434 (2004).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Pino, E. C., Webster, C. M., Carr, C. E. & Soukas, A. A. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans. J. Vis. Exp. https://doi.org/10.3791/50180 (2013).
Google Scholar
Hakim, A. et al. WorMachine: machine learning-based phenotypic analysis tool for worms. BMC Biol. 16, 8 (2018).
Google Scholar
Motola, D. L. et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124, 1209–1223 (2006).
Google Scholar
Ogawa, A., Streit, A., Antebi, A. & Sommer, R. J. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr. Biol. 19, 67–71 (2009).
Google Scholar
Wang, Z. et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc. Natl. Acad. Sci. 106, 9138–9143 (2009).
Google Scholar
Hu, P. Dauer. WormBook: The C. elegans Research Community (2007).
Chaudhuri, J., Kache, V. & Pires-daSilva, A. Regulation of sexual plasticity in a nematode that produces males, females, and hermaphrodites. Curr. Biol. 21, 1548–1551 (2011).
Google Scholar
Luciani, G. M. et al. Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans. Nat. Chem. Biol. 7, 891–893 (2011).
Google Scholar
Adams, S., Pathak, P., Shao, H., Lok, J. B. & Pires-daSilva, A. Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Sci. Rep. 9, 483 (2019).
Google Scholar
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).
Google Scholar
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).
Google Scholar
Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).
Google Scholar
Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).
Google Scholar
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
Google Scholar
Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).
Google Scholar
Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).
Google Scholar
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucl. Acids Res. 39, W29–W37 (2011).
Google Scholar
Andersen, C. L., Jensen, J. L. & Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004).
Google Scholar
McGhee, J. D. The C. elegans intestine. WormBook: The Online Review of C. elegans Biology [Internet] (WormBook, 2007).
Mullaney, B. C. & Ashrafi, K. C. elegans fat storage and metabolic regulation. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 1791, 474–478 (2009).
Google Scholar
O’Rourke, E. J., Soukas, A. A., Carr, C. E. & Ruvkun, G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 10, 430–435 (2009).
Google Scholar
Mak, H. Y. Lipid droplets as fat storage organelles in Caenorhabditis elegans. J. Lipid Res. 53, 28–33 (2012).
Google Scholar
Kroetz, S. M., Srinivasan, J., Yaghoobian, J., Sternberg, P. W. & Hong, R. L. The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. BMC Proc. 6, P27 (2012).
Google Scholar
Edgar, L. G. & McGhee, J. D. Embryonic expression of a gut-specific esterase in Caenorhabditis elegans. Dev. Biol. 114, 109–118 (1986).
Google Scholar
Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386 (1999).
Google Scholar
Bendesky, A., Tsunozaki, M., Rockman, M. V., Kruglyak, L. & Bargmann, C. I. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472, 313–318 (2011).
Google Scholar
Garrison, J. L. et al. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338, 540–543 (2012).
Google Scholar
Joo, H.-J. et al. Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J. Biol. Chem. 285, 29319–29325 (2010).
Google Scholar
Yassin, L. et al. Characterization of the DEG-3/DES-2 receptor: a nicotinic acetylcholine receptor that mutates to cause neuronal degeneration. Mol. Cell. Neurosci. 17, 589–599 (2001).
Google Scholar
Zhang, X., Wang, Y., Perez, D. H., Lipinski, R. A. J. & Butcher, R. A. Acyl-CoA oxidases fine-tune the production of ascaroside pheromones with specific side chain lengths. ACS Chem. Biol. https://doi.org/10.1021/acschembio.7b01021 (2018).
Google Scholar
Borne, F., Kasimatis, K. R. & Phillips, P. C. Quantifying male and female pheromone-based mate choice in Caenorhabditis nematodes using a novel microfluidic technique. PLoS ONE 87, 511 (2017).
Choe, A. et al. Sex-specific mating pheromones in the nematode Panagrellus redivivus. Proc. Natl. Acad. Sci. 109, 20949–20954 (2012).
Google Scholar
Duggal, C. L. Sex attraction in the free-living nematode panagrellus redivivus. Nematologica 24, 213–221 (1978).
Google Scholar
Andersson, M. Sexual Selection Vol. 72 (Princeton University Press, 1994).
Google Scholar
Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).
Google Scholar
Kvarnemo, C. & Simmons, L. W. Polyandry as a mediator of sexual selection before and after mating. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120042 (2013).
Google Scholar
Parker, G. A. & Birkhead, T. R. Polyandry: the history of a revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120335 (2013).
Google Scholar
Rhainds, M. Female mating failures in insects. Entomol. Exp. Appl. 136, 211–226 (2010).
Google Scholar
Hammond, K. A. Adaptation of the maternal intestine during lactation. J. Mammary Gland Biol. Neoplasia 2, 243–252 (1997).
Google Scholar
Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. B Biol. Sci. 363, 375–398 (2008).
Google Scholar
Reiff, T. et al. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife 4, e06930 (2015).
Google Scholar
Kaliszewicz, A. Interference of asexual and sexual reproduction in the green hydra. Ecol. Res. 26, 147–152 (2011).
Google Scholar
Oyarzún, P. A., Nuñez, J. J., Toro, J. E. & Gardner, J. P. A. Trioecy in the Marine Mussel Semimytilus algosus (Mollusca, Bivalvia): stable sex ratios across 22 degrees of a latitudinal gradient. Front. Mar. Sci. 7, 348 (2020).
Google Scholar
Armoza-Zvuloni, R., Kramarsky-Winter, E., Loya, Y., Schlesinger, A. & Rosenfeld, H. Trioecy, a unique breeding strategy in the sea anemone aiptasia diaphana and its association with sex steroids. Biol. Reprod. 90, 122 (2014).
Google Scholar
Greene, J. S. et al. Balancing selection shapes density-dependent foraging behaviour. Nature. 539(7628), 254–258. https://doi.org/10.1038/nature19848 (2016).
Google Scholar
Kieninger, M. R. et al. The Nuclear Hormone Receptor NHR-40 Acts Downstream of the Sulfatase EUD-1 as Part of a Developmental Plasticity Switch in Pristionchus.Curr Biol 26(16), 2174–2179. https://doi.org/10.1016/j.cub.2016.06.018 (2016).
Therrien, M., Rouleau, G. A., Dion, P. A., Parker, J. A. & Dupuy, D. Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. elegans. PLoS ONE 8(12), e83450. https://doi.org/10.1371/journal.pone.0083450 (2013).
Lee, B. H., Liu, J., Wong, D., Srinivasan, S., Ashrafi, K. & Kim, S. K. Hyperactive Neuroendocrine Secretion Causes Size Feeding and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants. PLoS Biol 9(12), e1001219. https://doi.org/10.1371/journal.pbio.1001219 (2011).
Google Scholar
Li, C. & Kim, K. Family of FLP Peptides in Caenorhabditis elegans and Related Nematodes. Front Endocrinol. https://doi.org/10.3389/fendo.2014.00150 (2014).
Buntschuh, I. et al. FLP-1 neuropeptides modulate sensory and motor circuits in the nematode Caenorhabditis elegans. PLoS ONE 13(1), e0189320. https://doi.org/10.1371/journal.pone.0189320 (2018).
Topalidou, I. et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLOS Genet 12(5), e1006074. https://doi.org/10.1371/journal.pgen.1006074 (2016).
Maman, M. et al. A Neuronal GPCR is Critical for the Induction of the Heat Shock Response in the Nematode C. elegans. J Neurosci 33(14), 6102–6111. https://doi.org/10.1523/JNEUROSCI.4023-12.2013 (2013).
Source: Ecology - nature.com