Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. R. Soc. B 281, 20141611 (2014).
Google Scholar
Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).
Google Scholar
Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).
Google Scholar
Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
Google Scholar
Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).
Google Scholar
Blondel, J., Dias, P. C., Perret, P., Maistre, M. & Lambrechts, M. M. Selection-based biodiversity at a small spatial scale in a low-dispersing insular bird. Science 285, 1399–1402 (1999).
Google Scholar
Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).
Google Scholar
Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl Acad. Sci. 97, 1630–1633 (2000).
Google Scholar
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).
Google Scholar
Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180178 (2019).
Google Scholar
Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: a role for life-history characteristics? Ecol. Evol. 7, 10492–10502 (2017).
Google Scholar
Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. Lond. B Biol. Sci. 270, 367–372 (2003).
Google Scholar
Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).
Google Scholar
Asch, M. V., Tienderen, P. H. V., Holleman, L. J. M. & Visser, M. E. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol. 13, 1596–1604 (2007).
Google Scholar
Silverin, B. et al. Ambient temperature effects on photo induced gonadal cycles and hormonal secretion patterns in Great Tits from three different breeding latitudes. Horm. Behav. 54, 60–68 (2008).
Google Scholar
Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).
Google Scholar
Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
Google Scholar
Silverin, B., Massa, R. & Stokkan, K. A. Photoperiodic adaptation to breeding at different latitudes in great tits. Gen. Comp. Endocrinol. 90, 14–22 (1993).
Google Scholar
Phillimore, A. B. et al. Passerines may be sufficiently plastic to track temperature‐mediated shifts in optimum lay date. Glob. Chang Biol. 22, 3259–3272 (2016).
Google Scholar
Bailey, L. D. & van de Pol, M. climwin: an R toolbox for climate window analysis. PLoS ONE 11, e0167980 (2016).
Google Scholar
van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).
Google Scholar
Van de Pol, M. & Bailey, L. D. Quantifying the climatic sensitivity of individuals, populations, and species. Eff. Clim. Change Birds 44; pp. 44–59 (2019).
Culina, A. et al. Connecting the data landscape of long‐term ecological studies: the SPI‐Birds data hub. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13388 (2020).
Verhagen, I., Tomotani, B. M., Gienapp, P. & Visser, M. E. Temperature has a causal and plastic effect on timing of breeding in a small songbird. J. Exp. Biol. 223, jeb218784 (2020).
Google Scholar
Buse, A., Dury, S. J., Woodburn, R. J. W., Perrins, C. M. & Good, J. E. G. Effects of elevated temperature on multi-species interactions: the case of Pedunculate Oak, Winter Moth and Tits. Funct. Ecol. 13, 74–82 (1999).
Google Scholar
Van Noordwijk, A. J., McCleery, R. H. & Perrins, C. M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451–458 (1995).
Google Scholar
Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).
Google Scholar
Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLOS ONE 8, e65427 (2013).
Google Scholar
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
Google Scholar
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLOS Biol. 6, e325 (2008).
Google Scholar
Dhondt, A. A., Eyckerman, R., Moermans, R. & Hublé, J. Habitat and laying date of Great and Blue Tit Parus major and P. caeruleus. Ibis 126, 388–397 (1984).
Google Scholar
Bourgault, P., Thomas, D., Perret, P. & Blondel, J. Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican blue tit (Cyanistes caeruleus). Oecologia 162, 885–892 (2010).
Google Scholar
Blondel, J., Dias, P. C., Maistre, M. & Perret, P. Habitat Heterogeneity and Life-History Variation of Mediterranean Blue Tits (Parus caeruleus). Auk 110, 511–520 (1993).
Google Scholar
Blondel, J., Dervieux, A., Maistre, M. & Perret, P. Feeding ecology and life history variation of the blue tit in Mediterranean deciduous and sclerophyllous habitats. Oecologia 88, 9–14 (1991).
Google Scholar
Vatka, E., Orell, M. & Rytkönen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Glob. Change Biol. 17, 3002–3009 (2011).
Google Scholar
Massa, B., Cusimano, C. A., Margagliotta, B. & Galici, R. Reproductive characteristics and differential response to seasonal temperatures of blue and great tits (Cyanistes caeruleus & Parus major) in three neighbouring mediterranean habitats. Rev. Ecol. 66, 157–172 (2011).
Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).
Google Scholar
Nolet, B. A. et al. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J. Anim. Ecol. 82, 804–813 (2013).
Google Scholar
Petanidou, T. et al. Variable flowering phenology and pollinator use in a community suggest future phenological mismatch. Acta Oecologica 59, 104–111 (2014).
Google Scholar
McLean, N., van der Jeugd, H. P. & van de. Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLOS ONE 13, e0192401 (2018).
Google Scholar
van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
Google Scholar
Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).
Google Scholar
Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).
Google Scholar
Martin, R. O., Cunningham, S. J. & Hockey, P. A. R. Elevated temperatures drive fine-scale patterns of habitat use in a savanna bird community. Ostrich 86, 127–135 (2015).
Google Scholar
Latimer, C. E. & Zuckerberg, B. Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography 40, 158–170 (2017).
Google Scholar
Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).
Google Scholar
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Tang, H. et al. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 231, 111262 (2019).
Google Scholar
Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. Biol. Sci. 272, 2561–2569 (2005).
Google Scholar
Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).
Google Scholar
Langmore, N. E., Bailey, L. D., Heinsohn, R. G., Russell, A. F. & Kilner, R. M. Egg size investment in superb fairy-wrens: helper effects are modulated by climate. Proc. Biol. Sci. 283, 20161875 (2016).
Google Scholar
del Hoyo, J. et al. Handbook of the Birds of the World and BirdLife International Illustrated Checklist of the Birds of the World (Lynx Edicions/Birdlife International, 2016).
Both, C. et al. Large–scale geographical variation confirms that climate change causes birds to lay earlier. Proc. R. Soc. Lond. B Biol. Sci. 271, 1657–1662 (2004).
Google Scholar
Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmospheres 113, D20119 (2008).
Google Scholar
Klok, E. J. & Klein Tank, A. M. G. Updated and extended European dataset of daily climate observations. Int. J. Climatol. 29, 1182–1191 (2009).
Google Scholar
Simmonds, E. G., Cole, E. F. & Sheldon, B. C. Cue identification in phenology: a case study of the predictive performance of current statistical tools. J. Anim. Ecol. 88, 1428–1440 (2019).
Google Scholar
Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018).
Google Scholar
Slagsvold, T. Annual and geographical variation in the time of breeding of the great tit Parus major and the Pied Flycatcher Ficedula hypoleuca in relation to environmental phenology and spring temperature. Ornis Scand. Scand. J. Ornithol. 7, 127–145 (1976).
Google Scholar
Haest, B., Hüppop, O. & Bairlein, F. Challenging a 15‐year‐old claim: the North Atlantic Oscillation index as a predictor of spring migration phenology of birds. Glob. Change Biol. 24, 1523–1537 (2018).
Google Scholar
Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).
Google Scholar
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).
Google Scholar
Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).
Google Scholar
R. Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).
Bailey, L. D. et al. Bird populations most exposed to climate change are less sensitive to climatic variation, Zenodo, https://doi.org/10.5281/zenodo.5747634 (2022).
Bailey, L. D. et al. Bird populations most exposed to climate change are less sensitive to climatic variation, LiamDBailey/baileyetal2021, https://doi.org/10.5281/zenodo.6027546 (2022).
Source: Ecology - nature.com