in

Jet stream position explains regional anomalies in European beech forest productivity and tree growth

  • Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q J. R. Meteorol. Soc. 136, 856–868 (2010).

    ADS 
    Article 

    Google Scholar 

  • Coumou, D., Capua, D. I., Vavrus, G., Wang, L. S. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J. & Trouet, V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact. 21, 1–23 (2017).

    Article 

    Google Scholar 

  • Trouet, V., Babst, F. & Meko, M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun. 9, 180 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mahlstein, I., Martius, O., Chevalier, C. & Ginsbourger, D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett. 39, 1–6 (2012).

    Google Scholar 

  • Röthlisberger, M., Pfahl, S. & Martius, O. Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett. 43, 10,910–989,997 (2016).

    Article 

    Google Scholar 

  • Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, B., Sutton, R. T., Woollings, T. & Hodges, K. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ. Res. Lett. 8, 34037 (2013).

    Article 

    Google Scholar 

  • Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    ADS 
    Article 

    Google Scholar 

  • Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 12, 712–717 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    ADS 
    Article 

    Google Scholar 

  • Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).

    ADS 
    Article 

    Google Scholar 

  • Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).

    ADS 
    Article 

    Google Scholar 

  • Sillmann, J. et al. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extrem. 18, 65–74 (2017).

    Article 

    Google Scholar 

  • Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bastos, A., Gouveia, C. M., Trigo, R. M. & Running, S. W. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11, 3421–3435 (2014).

    ADS 
    Article 

    Google Scholar 

  • Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D. & Schär, C. Soil moisture–atmosphere interactions during the 2003 european summer heat wave. J. Clim. 20, 5081–5099 (2007).

    ADS 
    Article 

    Google Scholar 

  • Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    ADS 
    Article 

    Google Scholar 

  • Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    ADS 
    Article 

    Google Scholar 

  • Rammig, A. et al. Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity. Biogeosciences 12, 373–385 (2015).

    ADS 
    Article 

    Google Scholar 

  • Spinoni, J., Naumann, G., Vogt, J. V. & Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 3, 509–524 (2015).

    Article 

    Google Scholar 

  • Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q J. R. Meteorol. Soc. 143, 2960–2972 (2017).

    ADS 
    Article 

    Google Scholar 

  • Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Change 7, 557–562 (2017).

    Article 

    Google Scholar 

  • Seftigen, K., Frank, D. C., Björklund, J., Babst, F. & Poulter, B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365 (2018).

    Article 

    Google Scholar 

  • Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014).

    CAS 
    Article 

    Google Scholar 

  • Zweifel, R. & Sterck, F. A conceptual tree model explaining legacy effects on stem growth. Front. Glob. Change 1, 9 (2018).

    Article 

    Google Scholar 

  • Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. N. Phytol. 221, 652–668 (2019).

    CAS 
    Article 

    Google Scholar 

  • Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Chang. Biol. 24, 504–516 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • Davini, P. & Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 43, 1497–1511 (2014).

    Article 

    Google Scholar 

  • Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. 39 (2012).

  • Drouard, M. & Woollings, T. Contrasting mechanisms of summer blocking over western Eurasia. Geophys. Res. Lett. 45, 12,040–12,048 (2018).

    Article 

    Google Scholar 

  • Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic pattern coupling. Nat. Commun. 7, 10315 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ascoli, D. et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 8, 1–9 (2017).

    CAS 
    Article 

    Google Scholar 

  • Sousa, P. M. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dyn. 48, 1141–1160 (2017).

    Article 

    Google Scholar 

  • Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016).

    Article 

    Google Scholar 

  • Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 362–379 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Leuschner, C. Drought response of European beech (Fagus sylvatica L.): A review. Perspect. Plant Ecol. Evol. Syst. 47, 125576 (2020).

    Article 

    Google Scholar 

  • Muffler, L. et al. Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. J. Biogeogr. 47, 1910–1921 (2020).

    Article 

    Google Scholar 

  • Wang, F. et al. Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees 35, 53–67 (2021).

    CAS 
    Article 

    Google Scholar 

  • Hall, R. J., Jones, J. M., Hanna, E., Scaife, A. A. & Erdélyi, R. Drivers and potential predictability of summertime North Atlantic polar front jet variability. Clim. Dyn. 48, 3869–3887 (2017).

    Article 

    Google Scholar 

  • Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 4, 704–709 (2014).

    ADS 
    Article 

    Google Scholar 

  • Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 54002 (2019).

    Article 

    Google Scholar 

  • Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Peings, Y., Cattiaux, J., Vavrus, S. J. & Magnusdottir, G. Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett. 13, 74016 (2018).

    Article 

    Google Scholar 

  • Matsueda, M. & Endo, H. The robustness of future changes in Northern Hemisphere blocking: a large ensemble projection with multiple sea surface temperature patterns. Geophys. Res. Lett. 44, 5158–5166 (2017).

    ADS 
    Article 

    Google Scholar 

  • Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018).

    Article 

    Google Scholar 

  • Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 10, 20–29 (2020).

    ADS 
    Article 

    Google Scholar 

  • de Vries, H., Woollings, T., Anstey, J., Haarsma, R. J. & Hazeleger, W. Atmospheric blocking and its relation to jet changes in a future climate. Clim. Dyn. 41, 2643–2654 (2013).

    Article 

    Google Scholar 

  • Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 4, 287–300 (2018).

    Article 

    Google Scholar 

  • Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Chang. Biol. 24, 4304–4315 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008).

    Article 

    Google Scholar 

  • Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Dorado-Liñán, I. et al. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chan. Biol. 25, 1296–1314 (2019).

    ADS 
    Article 

    Google Scholar 

  • DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 319–330 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Sci. 63, 625–644 (2006).

    Article 

    Google Scholar 

  • Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Popkin, G. How much can forests fight climate change? Nature 565, 280–282 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: twenty years of improvements? J. Clim. 29, 8823–8840 (2016).

    ADS 
    Article 

    Google Scholar 

  • Barton, N. P. & Ellis, A. W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol. 29, 851–862 (2009).

    Article 

    Google Scholar 

  • Doblas-Reyes, F. J., Casado, M. J. & Pastor, M. A. Sensitivity of the Northern Hemisphere blocking frequency to the detection index. J. Geophys. Res. Atmos. 107, D2 (2002).

    Article 

    Google Scholar 

  • Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).

    Google Scholar 

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    ADS 
    Article 

    Google Scholar 

  • Team, R. Core (2020). R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. URL https://www.R-project.org (2020).

  • Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Article 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

  • Barton, K. Mu-MIn: Multi-model inference. R Package Version 0.12.2/r18, (2009) http://R-Forge.R-project.org/projects/mumin/


  • Source: Ecology - nature.com

    Punishment institutions selected and sustained through voting and learning

    MIT engineers introduce the Oreometer