in

Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic

  • Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466:591–6.

    CAS 
    Article 

    Google Scholar 

  • Bonachela JA, Klausmeier CA, Edwards KF, Litchman E, Levin SA. The role of phytoplankton diversity in the emergent oceanic stoichiometry. J Plankton Res. 2016;38:1021–35.

    CAS 
    Article 

    Google Scholar 

  • Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.

    CAS 
    Article 

    Google Scholar 

  • Longhurst A. Seasonal cycles of pelagic production and consumption. Prog Oceanogr. 1995;36:77–167.

    Article 

    Google Scholar 

  • Li WKW, Glen Harrison W, Head EJH. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc R Soc B Biol Sci. 2006;273:1953–60.

    Article 

    Google Scholar 

  • Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1–12.

    Article 

    Google Scholar 

  • Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D—using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.

    Article 

    Google Scholar 

  • Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ. 2008;112:3153–9.

    Article 

    Google Scholar 

  • Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.

    CAS 
    Article 

    Google Scholar 

  • Karl DM, Lukas R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res Part II Top Stud Oceanogr. 1996;43:129–56.

    CAS 
    Article 

    Google Scholar 

  • Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.

    CAS 
    Article 

    Google Scholar 

  • Harris R. The L4 time-series: the first 20 years. J Plankton Res. 2010;32:577–83.

    Article 

    Google Scholar 

  • Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science. 2016;354:326–9.

    CAS 
    Article 

    Google Scholar 

  • Shi Q, Wallace D. A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord. Ocean Sci. 2018;14:1385–403.

    CAS 
    Article 

    Google Scholar 

  • Crawford A, Shore J, Shan S. Measurement of tidal currents using an autonomous underwater vehicle. IEEE J Ocean Eng 2021;1–13.

  • Kerrigan EA, Kienast M, Thomas H, Wallace DWR. Using oxygen isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a Northwestern Atlantic fjord. Estuar Coast Shelf Sci. 2017;199:96–104.

    CAS 
    Article 

    Google Scholar 

  • Shan S, Sheng J. Examination of circulation, flushing time and dispersion in Halifax Harbour of Nova Scotia. Water Qual Res J. 2012;47:353–74.

    CAS 
    Article 

    Google Scholar 

  • Clayton S, Dutkiewicz S, Jahn O, Follows MJ. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol Oceanogr Fluids Environ. 2013;3:182–97.

    Article 

    Google Scholar 

  • Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ. Patterns of diversity in marine phytoplankton. Science. 2010;327:1509–11.

    CAS 
    Article 

    Google Scholar 

  • Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, et al. Dimensions of marine phytoplankton diversity. Biogeosciences. 2020;17:609–34.

    Article 

    Google Scholar 

  • Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.

    Article 

    Google Scholar 

  • Li WKW. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr. 1998;43:1746–53.

    Article 

    Google Scholar 

  • DFO Canada. AZMP Bulletin PMZA. 2006. DFO.

  • Cullen JJ, Doolittle WF, Levin SA, Li WKW. Patterns and prediction in microbial oceanography. Oceanography. 2007;20:34–46.

    Article 

    Google Scholar 

  • El‐Swais H, Dunn KA, Bielawski JP, Li WKW, Walsh DA. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ Microbiol. 2015;17:3642–61.

    Article 

    Google Scholar 

  • Georges AA, El-Swais H, Craig SE, Li WK, Walsh DA. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014;8:1301–13.

    CAS 
    Article 

    Google Scholar 

  • Conover SAM. Nitrogen utilization during spring blooms of marine phytoplankton in Bedford Basin, Nova Scotia, Canada. Mar Biol. 1975;32:247–61.

    CAS 
    Article 

    Google Scholar 

  • Lehman PW. Comparison of chlorophyll a and carotenoid pigments as predictors of phytoplankton biomass. Mar Biol. 1981;65:237–44.

    CAS 
    Article 

    Google Scholar 

  • Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol Indic. 2016;60:223–30.

    Article 

    Google Scholar 

  • Zorz J, Willis C, Comeau AM, Langille MGI, Johnson CL, Li WKW, et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front Microbiol 2019;10.

  • Comeau AM, Douglas GM, Langille MGI. Microbiome Helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127–16.

    CAS 
    Article 

    Google Scholar 

  • Comeau AM, Li WKW, Tremblay J-É, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLOS ONE. 2011;6:e27492.

    CAS 
    Article 

    Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS 
    Article 

    Google Scholar 

  • Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal Internal Transcribed Spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009–15.

    Article 

    Google Scholar 

  • Willis C, Desai D, LaRoche J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol Lett. 2019;366:1–9.

    Article 

    Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    CAS 
    Article 

    Google Scholar 

  • Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–45.

    CAS 
    Article 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–96.

    CAS 
    Article 

    Google Scholar 

  • NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. 2020. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • RStudio Team. RStudio: Integrated Development for R. 2020. RStudio, Inc., Boston, MA. http://www.rstudio.com/.

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    Article 

    Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.

    CAS 
    Article 

    Google Scholar 

  • Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.

    Article 

    Google Scholar 

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    CAS 
    Article 

    Google Scholar 

  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    CAS 
    Article 

    Google Scholar 

  • Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version. 2019;2:5–6. https://CRAN.R-project.org/package=vegan.

    Google Scholar 

  • Wickham H. ggplot2: Elegant graphics for data analysis. 2016. Springer-Verlag, New York.

  • Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016;10:333–45.

    CAS 
    Article 

    Google Scholar 

  • Ahlgren NA, Rocap G. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol. 2012;3:1–24.

    Article 

    Google Scholar 

  • Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

    Article 

    Google Scholar 

  • Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.

    CAS 
    Article 

    Google Scholar 

  • Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.

    Article 

    Google Scholar 

  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82.

    CAS 
    Article 

    Google Scholar 

  • Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.

    CAS 
    Article 

    Google Scholar 

  • Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.

    Article 

    Google Scholar 

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res. 2005;53:43–66.

    CAS 
    Article 

    Google Scholar 

  • Li W, Dickie P, Spry J. Plankton monitoring programme in the Bedford Basin, 1991-1997. 1998. Canadian Data Report of Fisheries and Aquatic Sciences 1036. Ocean Sciences Division, Maritimes Region, Fisheries and Oceans Canada.

  • Bork P, Bowler C, Vargas C, de, Gorsky G, Karsenti E, Wincker P. Tara Oceans studies plankton at planetary scale. Science. 2015;348:873–873.

    CAS 
    Article 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.

    Article 

    Google Scholar 

  • McLachlan JL, Seguel MR, Fritz L. Tetreutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): a quadriflagellate, phototrophic marine Euglenoid. J Phycol. 1994;30:538–44.

    Article 

    Google Scholar 

  • Edlund MB, Stoermer EF. Resting spores of the freshwater diatoms Acanthoceras and Urosolenia. J Paleolimnol. 1993;9:55–61.

    Article 

    Google Scholar 

  • Tomas CR. Marine Phytoplankton: a guide to naked flagellates and coccolithophorids. 2012. Academic Press.

  • Haas S, Robicheau BM, Rakshit S, Tolman J, Algar CK, LaRoche J, et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc Natl Acad Sci. 2021;118:e2004877118.

    CAS 
    Article 

    Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004;305:354–60.

    CAS 
    Article 

    Google Scholar 

  • Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.

    Article 

    Google Scholar 

  • Choi CJ, Bachy C, Jaeger GS, Poirier C, Sudek L, Sarma VVSS, et al. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr Biol. 2017;27:R15–16.

    CAS 
    Article 

    Google Scholar 

  • Yoo YD, Seong KA, Kim HS, Jeong HJ, Yoon EY, Park J, et al. Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria. Harmful Algae. 2018;73:98–109.

    Article 

    Google Scholar 

  • Dasilva CR, Li WKW, Lovejoy C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J Plankton Res. 2014;36:344–63.

    CAS 
    Article 

    Google Scholar 

  • Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni SJ. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:23.

    Article 

    Google Scholar 

  • Monier A, Worden AZ, Richards TA. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ Microbiol Rep. 2016;8:461–9.

    CAS 
    Article 

    Google Scholar 

  • Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:2509–22.

    CAS 
    Article 

    Google Scholar 

  • Choi CJ, Jimenez V, Needham D, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:2187.

    Google Scholar 

  • Leblanc K, Quéguiner B, Diaz F, Cornet V, Michel-Rodriguez M, Durrieu de Madron X, et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat Commun. 2018;9:953.

    Article 

    Google Scholar 

  • Lundholm N, Hasle GR. Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere – morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov. Phycologia. 2010;49:438–60.

    Article 

    Google Scholar 

  • Martínez-pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.

    Article 

    Google Scholar 

  • Zehr JP, Shilova IN, Farnelid HM, Muñoz-Marín M, del C, Turk-Kubo KA. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:1–11.

    Google Scholar 

  • Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–77.

    CAS 
    Article 

    Google Scholar 

  • Altenburger A, Blossom HE, Garcia-Cuetos L, Jakobsen HH, Carstensen J, Lundholm N, et al. Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci Adv. 2020;6:eabb1611.

    CAS 
    Article 

    Google Scholar 

  • Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 2020;14:413–24.

    CAS 
    Article 

    Google Scholar 

  • Chassot E, Bonhommeau S, Dulvy NK, Mélin F, Watson R, Gascuel D, et al. Global marine primary production constrains fisheries catches. Ecol Lett. 2010;13:495–505.

    Article 

    Google Scholar 

  • Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M, et al. Mapping the global potential for marine aquaculture. Nat Ecol Evol. 2017;1:1317–24.

    Article 

    Google Scholar 

  • Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;6:393.

    Article 

    Google Scholar 

  • Rigosi A, Fleenor W, Rueda F. State-of-the-art and recent progress in phytoplankton succession modelling. Environ Rev. 2010;18:423–40.

    Article 

    Google Scholar 

  • Daniels CJ, Poulton AJ, Esposito M, Paulsen ML, Bellerby R, St John M, et al. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers. Biogeosciences. 2015;12:2395–409.

    Article 

    Google Scholar 

  • Masuda Y, Yamanaka Y, Hirata T, Nakano H. Competition and community assemblage dynamics within a phytoplankton functional group: Simulation using an eddy-resolving model to disentangle deterministic and random effects. Ecol Model. 2017;343:1–14.

    Article 

    Google Scholar 

  • Percopo I, Siano R, Cerino F, Sarno D, Zingone A. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Botanica Marina. 2011;54:243–67.

    Article 

    Google Scholar 

  • Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 2003;25:1331–46.

    Article 

    Google Scholar 

  • Agawin N, Duarte C, Agustí S, Vaqué D. Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquat Microb Ecol. 2004;34:57–67.

    Article 

    Google Scholar 

  • Bertilsson S, Berglund O, Karl DM, Chisholm SW. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology Oceanogr. 2003;48:1721–31.

    CAS 
    Article 

    Google Scholar 

  • Tomas CR. Identifying Marine Phytoplankton. 1997. Elsevier.

  • Harrison PJ, Zingone A, Mickelson MJ, Lehtinen S, Ramaiah N, Kraberg AC, et al. Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuarine, Coastal Shelf Sci. 2015;162:130–42.

    CAS 
    Article 

    Google Scholar 

  • Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Goër SL, Vaulot D. Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol. 1999;35:368–81.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Empowering people to adapt on the frontlines of climate change

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award