Ferreira, G. S. & Langer, M. C. A pelomedusoid (Testudines, Pleurodira) plastron from the Lower Cretaceous of Alagoas, Brazil. Cretaceous Res. 46, 267–271 (2013).
Google Scholar
Romano, P. S. R., Gallo, V., Ramos, R. R. C. & Antonioli, L. Atolchelys lepida, a new side-necked turtle from the Early Cretaceous of Brazil and the age of crown Pleurodira. Biol. Lett. 10, 1–10 (2014).
Google Scholar
Ferreira, G. S., Bronzati, M., Langer, M. C. & Sterli, J. Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira). R. Soc. Open Sci. 5, 1–17 (2018).
Google Scholar
de la Fuente, M. S., Umazano, A. M., Sterli, J. & Carballido, J. L. New chelid turtles of the lower section of the Cerro Barcino formation (Aptian-Albian?), Patagonia, Argentina. Cretaceous Res. 32, 527–537 (2011).
Google Scholar
Joyce, W. G., Parham, J. F., Lyson, T. R., Warnock, R. C. M. & Donoghue, P. C. J. A divergence dating analysis of turtles using fossil calibrations: An example of best practices. J. Paleontol. 87, 612–634 (2013).
Google Scholar
Pereira, A. G., Sterli, J., Moreira, F. R. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).
Google Scholar
Shaffer, H. B., McCartney-Melstad, E., Near, T. J., Mount, G. G. & Spinks, P. Q. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol. 115, 7–15 (2017).
Google Scholar
Rueda-Almonacid, J. Vicente. Las tortugas y los cocodrilianos de los países andinos de trópico (Conservación Internacional, 2007).
Georges, A. & Thomson, S. Diversity of Australasian freshwater turtles, with an annotated synonymy and keys to species. Zootaxa 2496, 1–37 (2010).
Google Scholar
TTWG. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status, 9th ed. Vol. 8 (Chelonian Research Foundation and Turtle Conservancy, 2021).
Uetz, P., F. P. A. R. & H. J. The Reptile Database. http://www.reptile-database.org/ (2022).
Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. U.S.A. 115, 6034–6039 (2018).
Google Scholar
Mittermeier, R. A., van Dijk, P. P., Rhodin, A. G. J. & Nash, S. D. Turtle hotspots: An analysis of the occurrence of tortoises and freshwater turtles in biodiversity hotspots, high-biodiversity wilderness areas, and turtle priority areas. Chelonian Conserv. Biol. 14, 2–10 (2015).
Google Scholar
Cunha, F. A. G., Sampaio, I., Carneiro, J. & Vogt, R. C. A New Species of Amazon Freshwater Toad-Headed Turtle in the Genus Mesoclemmys (Testudines: Pleurodira: Chelidae) from Brazil. Chelonian Conserv. Biol. 20, 151–166 (2021).
Brito, E. S. et al. New records of mesoclemmys raniceps (Testudines, chelidae) for the states of amazonas, pará and Rondônia, north Brazil, including the Tocantins basin. Herpetol. Notes 12, 283–289 (2019).
Cunha, F. A. G. et al. Distribution of Chelus fimbriata and Chelus orinocensis (Testudines: Chelidae). Chelonian Conserv. Biol. 20, 109–115 (2021).
Pritchard, P. Chelus fimbriata (Schneider 1783)—Matamata Turtle. In Conservation Biology of Freshwater Turtles and Tortoises 020.1–020.10 (Chelonian Research Foundation, 2008). https://doi.org/10.3854/crm.5.020.fimbriata.v1.2008.
Vogt, R. C. Tartarugas da Amazônia (2008).
Holmstrom, W. F. Preliminary observations on prey herding in the Matamata turtle, Chelus fimbriatus (Reptilia, Testudines, Chelidae). J. Herpetol. 12, 573 (1978).
Google Scholar
Teran, A. F., Vogt, R. C. & de Fatima Soares Gomez, M. Food Habits of an assemblage of five species of turtles in the Rio Guapore, Rondonia, Brazil. J. Herpetol. 29, 536 (1995).
Google Scholar
Vargas-Ramírez, M. et al. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 148 (2020).
Lasso, C. A. et al. Conservación y tráfico de la tortuga matamata, Chelus fimbriata (Schneider, 1783) en Colombia: un ejemplo del trabajo conjunto entre el Sistema Nacional Ambiental, ONG y academia. Biota Colombiana 19, 147–159 (2018).
Google Scholar
Barros, R. M., Sampaio, M. M., Assis, M. F., Ayres, M. & Cunha, O. R. General considerations on the karyotypic evolution of chelonia from the Amazon Region of Brazil. Cytologia 41, 559–565 (1976).
Google Scholar
Bull, J. J. & Legler, J. M. Karyotypes of side-necked turtles (Testudines: Pleurodira). Can. J. Zool. 58, 828–841 (1980).
Viana, P. F. et al. An optimized protocol for obtaining mitotic chromosomes from cultured reptilian lymphocytes. Nucleus 59,1–5 (2016).
Google Scholar
Mcbee, K., Bickham, J. W., Rhodin, A. G. J. & Mittermeier, R. A. Karyotypic Variation in the Genus Platemys (Testudines: Pleurodira). Copeia 2, 445–449 (1987).
Mazzoleni, S. et al. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae). Scientific Reports 10, 1–11 (2020).
Viana, P. F. et al. The Amazonian red side-necked turtle Rhinemys rufipes (Spix, 1824) (Testudines, Chelidae) Has a GSD sex-determining mechanism with an ancient XY sex microchromosome system. Cells 9, 1–15 (2020).
Ewert, M. A., Etcheberger, C. R. & Nelson, C. E. Turtle Sex-determining modes and TSD Patterns, and Some TSD Pattern Correlates 21–32 (Smithsonian Books, Washington, 2004).
Ferreira-Júnior Paulo. Aspectos Ecológicos da Determinação Sexual em Tartarugas. 39, 139–154 (2009).
Martinez, P. A., Ezaz, T., Valenzuela, N., Georges, A. & Marshall Graves, J. A. An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii: A new piece in the puzzle of sex chromosome evolution in turtles. Chromosom. Res. 16, 815–825 (2008).
Google Scholar
Lee, L. S., Montiel, E. E. & Valenzuela, N. Discovery of putative XX/XY male heterogamety in emydura subglobosa turtles exposes a novel trajectory of sex chromosome evolution in emydura. Cytogenet. Genome Res. 158, 160–169 (2019).
Google Scholar
Ezaz, T. et al. An XX/XY sex microchromosome system in a freshwater turtle, Chelodina longicollis (Testudines: Chelidae) with genetic sex determination. Chromosom. Res. 14, 139–150 (2006).
Google Scholar
van Doorn, G. S. Evolutionary transitions between sex-determining mechanisms: A review of theory. Sex. Dev. 8, 7–19 (2014).
Google Scholar
van Doorn, G. S. & Kirkpatrick, M. Turnover of sex chromosomes induced by sexual conflict. Nature 449, 909–912 (2007).
Google Scholar
Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination (Oxford University Press, Oxford, 2014).
Google Scholar
Bachtrog, D. et al. Sex determination: Why so many ways of doing it?. PLoS Biology 12, e1001899 (2014).
Google Scholar
Viana, P. F. et al. Landscape of snake’ sex chromosomes evolution spanning 85 MYR reveals ancestry of sequences despite distinct evolutionary trajectories. Sci. Rep. 10, 1–14 (2020).
Gamble, T. et al. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296–1309 (2015).
Google Scholar
Pennell, M. W., Mank, J. E. & Peichel, C. L. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 27, 3950–3963 (2018).
Google Scholar
Valenzuela, N. & Adams, D. C. Chromosome number and sex determination coevolve in turtles. Evolution 65, 1808–1813 (2011).
Google Scholar
Sabath, N. et al. Sex determination, longevity, and the birth and death of reptilian species. Ecol. Evol. 6, 5207–5220 (2016).
Google Scholar
Literman, R., Burrett, A., Bista, B. & Valenzuela, N. Putative independent evolutionary reversals from genotypic to temperature-dependent sex determination are associated with accelerated evolution of sex-determining genes in turtles. J. Mol. Evol. 86, 11–26 (2018).
Google Scholar
Bista, B., Wu, Z., Literman, R. & Valenzuela, N. Thermosensitive sex chromosome dosage compensation in ZZ/ZW softshell turtles, Apalone spinifera. Philos. Trans. R. Soc. B Biol. Sci. 376, 1–14 (2021).
Montiel, E. E., Badenhorst, D., Tamplin, J., Burke, R. L. & Valenzuela, N. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma 126, 105–113 (2017).
Google Scholar
Lee, L., Montiel, E. E., Navarro-Domínguez, B. M. & Valenzuela, N. Chromosomal rearrangements during turtle evolution altered the synteny of genes involved in vertebrate sex determination. Cytogenet. Genome Res. 157, 77–88 (2019).
Google Scholar
Bista, B. & Valenzuela, N. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 11, 1–11 (2020).
Zexian, Z. et al. Diversity of reptile sex chromosome evolution revealed by cytogenetic and linked-read sequencing. bioRxiv (2021).
Cunha, F. A. G., Fernandes, T., Franco, J. & Vogt, R. C. Reproductive biology and hatchling morphology of the amazon toad-headed turtle (Mesoclemmys raniceps) (Testudines: Chelidae), with notes on species morphology and taxonomy of the mesoclemmys group. Chelonian Conserv. Biol. 18, 195 (2019).
Google Scholar
Matsubara, K. et al. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma 125, 111–123 (2016).
Google Scholar
Gorman, G. C. The chromosomes of Reptilia, a cytotaxonomic interpretation. In Cytotaxonomy and Vertebrate Evolution 347–424 (1973).
Reed, K. M. et al. Cytogenetic analysis of the pleurodine turtle Phrynops hogei and its taxonomic implications. Amphibia Reptilia 12, 203–212 (1991).
Google Scholar
Cavalcante, M. G. et al. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae). PLoS ONE 13, 1–13 (2018).
Clemente, L. et al. Interstitial telomeric repeats are rare in turtles. Genes 11, 1–18 (2020).
Google Scholar
Singchat, W. et al. Chromosome map of the Siamese cobra: Did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?. BMC Genomics 19, 1–16 (2018).
Google Scholar
Srikulnath, K., Azad, B., Singchat, W. & Ezaz, T. Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS ONE 14, 1–11 (2019).
Google Scholar
Abramyan, J., Ezaz, T., Graves, J. A. M. & Koopman, P. Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosom. Res. 17, 1015–1024 (2009).
Google Scholar
Born, G. G. & Bertollo, L. A. C. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NOR-bearing × chromosome. Chromosom. Res. 8, 111–118 (2000).
Google Scholar
O’Meally, D. et al. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosom. Res. 18, 787–800 (2010).
Google Scholar
Ferreira, M., Garcia, C., Matoso, D. A., de Jesus, I. S. & Feldberg, E. A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in siluriformes: Cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae). Genetica 144, 591–599 (2016).
Google Scholar
Yano, C. F., Bertollo, L. A. C., Liehr, T., Troy, W. P. & de Cioffi, M. B. W. Chromosome dynamics in Triportheus Species (Characiformes, Triportheidae): An ongoing process narrated by repetitive sequences. J. Hered. 107, 342–348 (2016).
Google Scholar
Symonová, R. Integrative rDNAomics-importance of the oldest repetitive fraction of the eukaryote genome. Genes 10, 1–14 (2019).
Google Scholar
Kawai, A. et al. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet. Genome Res. 117, 92–102 (2007).
Google Scholar
Badenhorst, D., Stanyon, R., Engstrom, T. & Valenzuela, N. A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosom. Res. 21, 137–147 (2013).
Google Scholar
Viana, P. F. et al. Genomic organization of repetitive DNAs and differentiation of an XX/XY sex chromosome system in the Amazonian Puffer Fish, Colomesus asellus (Tetraodontiformes). Cytogen. Genome Research 153, 1–9 (2018).
Castoe, T. A. et al. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol. Evol. 3, 641–653 (2011).
Google Scholar
Castoe, T. A. et al. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biol. 12, 1–8 (2011).
Google Scholar
Card, D. C. et al. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies. PLoS ONE 9, e106649 (2014).
Google Scholar
Adams, R. H. et al. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 59, 295–310 (2016).
Google Scholar
Pearson, C. E. & Sinden, R. R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile × loci. Biochemistry 35, 5041–5053 (1996).
Google Scholar
Chamberlain, N. L., Driver, E. D. & Miesfeld, R. L. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22, 3181–3186 (1994).
Google Scholar
Sandberg, G. Effect of in vitro promoter methylation and CGG repeat expansion on FMR-1 expression. Nucleic Acids Res. 25, 2883–2887 (1997).
Google Scholar
Rubinsztein, D. C. et al. Microsatellite evolution—evidence for directionality and variation in rate between species. Nat. Genet. 10, 337–343 (1995).
Google Scholar
Eisen, J. A. Mechanistic basis for microsatellite instability. In Microsatellites: Evolution and Applications (eds Goldstein, D. B. & Schlotterer, C.) 34–48 (Oxford University Press, Oxford, 1999).
Payseur, B. A. & Nachman, M. W. Microsatellite variation and recombination rate in the human genome. Genetics 156, 1285–1298 (2000).
Google Scholar
Li, Y. C., Korol, A. B., Fahima, T., Beiles, A. & Nevo, E. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular ecology 11, 2453–2465 (2002).
Google Scholar
Klintschar, M. et al. Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis 25, 3344–3348 (2004).
Google Scholar
Jonika, M., Lo, J. & Blackmon, H. Mode and tempo of microsatellite evolution across 300 million years of insect evolution. Genes 11, 1–15 (2020).
Google Scholar
Shedlock, A. M. et al. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc. Natl. Acad. Sci. 104, 2767–2772 (2007).
Google Scholar
Ferreira, G. S., Rincón, A. D., Solórzano, A. & Langer, M. C. Review of the fossil matamata turtles: Earliest well-dated record and hypotheses on the origin of their present geographical distribution. Sci. Nat. 103, 1–12 (2016).
Google Scholar
Sumner, A. T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972).
Google Scholar
Gross, M. C., Schneider, C. H., Valente, G. T., Martins, C. & Feldberg, E. Variability of 18S rDNA locus among Symphysodon fishes: Chromosomal rearrangements. J. Fish Biol. 76, 1117–1127 (2010).
Google Scholar
IJdo, J. W., Wells, R. A., Baldini, A. & Reeders, S. T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 19, 4780–4780 (1991).
Google Scholar
Viana, P. F. et al. Is the karyotype of neotropical boid snakes really conserved? Cytotaxonomy, chromosomal rearrangements and karyotype organization in the Boidae family. PLoS ONE 11, 1–16 (2016).
Viana, P. F., Ezaz, T., Cioffi, M. D. B., Almeida, B. J. & Feldberg, E. Evolutionary insights of the zw sex chromosomes in snakes: A new chapter added by the amazonian puffing snakes of the genus spilotes. Genes 10, 1–15 (2019).
Google Scholar
Zwick, M. S. et al. A rapid procedure for the isolation of C0t−1 DNA from plants. Genome 40, 138–142 (1997).
Google Scholar
Ferreira, A. M. V. et al. Cytogenetic Analysis of Panaqolus tankei Cramer & Sousa, 2016 (Siluriformes, Loricariidae), an Ornamental Fish Endemic to Xingu River, Brazil. Cytogenet. Genome Res. 161, 187–194 (2021).
Google Scholar
Levan, A., Fredga, K. & Sandberg, A. A. Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220 (1964).
Google Scholar
Source: Ecology - nature.com