Sieńczuk, W. Toksykologia (PZWL Warszawa, 1999) (in Polish).
Kabata-Pendias, A. & Pendias, H. Biochemia pierwiastków śladowych (PZWL Warszawa, 1999) (in Polish).
Sharma, H., Rawal, N. & Mathew, B. B. The characteristics, toxicity and effects of cadmium. Int. J. Nanosci. Nanotechnol. 3, 1–9 (2015).
Duarte, A. et al. (eds) Soil pollution: From Monitoring to Remediation 1st edn. (Academic Press, 2017).
Zhang, H. & Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 678, 761–767 (2019).
Google Scholar
Lane, T. W. et al. A cadmium enzyme from a marine diatom. Nature 435, 42 (2005).
Google Scholar
Jӓrup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).
Google Scholar
Massányi, P., Massányi, M., Madeddu, R., Stawarz, R. & Lukáč, N. Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics 8, 94 (2020).
Google Scholar
Roy, S. Cadmium accumulation in crops and the increasing risk of dietary cadmium exposure: An overview. In Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches (eds Hasanuzzaman, M. et al.) 247–254 (Academic Press, 2019).
Google Scholar
Templeton, D. M. & Liu, Y. Multiple roles of cadmium in cell death and survival. Chem. Biol. Interact. 188, 267–275 (2010).
Google Scholar
Stojsavljević, A. et al. Evaluation of trace metals in thyroid tissues: Comparative analysis with benign and malignant thyroid diseases. Ecotoxicol. Environ. Saf. 183, 109479 (2019).
Google Scholar
Lewis, J. G. E. The Biology of Centipedes 1st edn. (Cambridge University Press, 1981).
Google Scholar
Hopkin, S. P. Ecophysiology of Metals in Terrestrial Invertebrates 1st edn. (Elsevier Applied Science, 1989).
Hopkin, S. P. & Read, H. J. The Biology of Millipedes (Oxford University Press, 1992).
Lipovšek, S., Letofsy-Papst, I., Hofer, F. & Pabst, M. A. Seasonal- and age-dependent changes of the structure and chemical composition of the spherites in the midgut gland of the harvestmen Gyas annulatus (Opiliones). Micron 33, 647–654 (2002).
Google Scholar
Chajec, Ł, Rost-Roszkowska, M. M., Vilimova, J. & Sosinka, A. Ultrastructure and regeneration of midgut epithelial cells in Lithobius forficatus (Chilopoda, Lithobiidae). Invertebr. Biol. 131, 119–132 (2012).
Google Scholar
Hopkin, S. P., Watson, K., Martin, M. H. & Mould, M. L. The assimilation of heavy metals by Lithobius variegatus and Glomeris marginata (Chilopoda; Diplopoda). Bijdr. Dierkd. 55, 88–94 (1985).
Adiyodi, K. G. & Adiyodi, R. G. (eds) Reproductive Biology of Invertebrates. Volume I. Oogenesis, Oviposition, and Oosorption (Wiley, 1983).
Adiyodi, K. G. & Adiyodi, R. G. (eds) Reproductive Biology of Invertebrates. Volume II. Spermatogenesis and Sperm Function (Wiley, 1983).
Sareen, M. L. & Adiyodi, K. G. Arthropoda – Myriapoda. In Reproductive Biology of Invertebrates. Volume I. Oogenesis, Oviposition, and Oosorption (eds Adiyodi, K. G. & Adiyodi, R. G.) 497–520 (Wiley, 1983).
Minelli, A. Chilopoda – Reproduction. In Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda. Vol. 1. Chilopoda (ed. Minelli, A.) 279–294 (Brill, 2011).
Google Scholar
Parolini, M. Toxicity of the non-steroidal anti-inflammatory drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 740, 140043 (2020).
Google Scholar
Nath, V. Oogenesis of Lithobius forficatus. Biol. Rev. 1, 148–157 (1924).
Google Scholar
Nath, V. Spermathogenesis of Lithobius forficatus. Biol. Rev. 1, 270–277 (1925).
Google Scholar
Descamps, M. Etude ultrastructurale des spermatogonies et de la croissance spermatocytaire chez Lithobius forficatus L. (Myriapode Chilopode). Z. Zellforsch. 121, 14–26 (1971).
Google Scholar
Descamps, M. Le cycle spermatogenétique chez Lithobius forficatus L. (Myriapode, Chilopode). I. Evolution et etude quantitative des populations cellulaires du tes ticle au cours du développement post-embryonnaire. Arch. Zool. Exp. Gen. 112, 199–209 (1971).
Herbaut, C. Etude cytochimique et ultrastructurale de l’ovogenése chez Lithobius forficatus L. (Myriapode Chilopode). Evolution des constituants cellulaires. Wilhelm Roux’ Arch. 170, 115–134 (1972).
Google Scholar
Descamps, M., Fabre, M. C., Grelle, C. & Gerard, S. Cadmium and lead kinetics during experimental contamination of the centipede Lithobius forficatus L. Arch. Environ. Contam. Toxicol. 31, 350–353 (1996).
Google Scholar
Vandenbulcke, F., Grelle, C., Fabre, M.-C. & Descamps, M. Implication of the midgut of the centipede Lithobius forficatus in the heavy metal detoxification process. Ecotoxicol. Environ. Saf. 41, 258–268 (1998).
Google Scholar
Rost-Roszkowska, M. et al. Influence of soil contaminated with cadmium on cell death in the digestive epithelium of soil centipede Lithobius forficatus (Myriapoda, Chilopoda). Eur. Zool. J. 87, 242–262 (2020).
Google Scholar
Rost-Roszkowska, M. et al. Effects of short- and long-term exposure to cadmium on salivary glands and fat body of soil centipede Lithobius forficatus (Myriapoda, Chilopoda): Histology and ultrastructure. Micron 137, 102915 (2020).
Google Scholar
Rost-Roszkowska, M. et al. Effects of cadmium on mitochondrial structure and function in different organs: Studies on the soil centipede Lithobius forficatus (Myriapoda, Chilopoda). Eur. Zool. J. 88, 632–664 (2021).
Google Scholar
Włodarczyk, A., Student, S. & Rost-Roszkowska, M. Autophagy and apoptosis in starved and refed Neocaridina davidi (Crustacea, Malacostraca) midgut. Can. J. Zool. 97, 294–303 (2019).
Google Scholar
Bradford, M. M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Wieser, W. Conquering terra firma: The copper problem from the isopod’s point of view. Helgolander Wiss. Meeresunters. 15, 282–293 (1967).
Google Scholar
Gräff, S., Berkus, M., Alberti, G. & Köhler, H. R. Metal accumulation strategies in saprophagous and phytophagous soil invertebrates: A quantitative comparison. Biometals 10, 45–53 (1997).
Google Scholar
Siekierska, E. & Urbańska-Jasik, D. The effect of cadmium and selenium ions on the ovary structure in leech Herpobdella octooculata (L.). Folia Morphol. 57, 61 (1998).
Siekierska, E. & Urbańska-Jasik, D. Cadmium effect on the ovarian structure in earthworm Dendrobaena veneta (Rosa). Environ. Pollut. 120, 289–297 (2002).
Google Scholar
Osman, W., El-Samad, L. M., Mokhamer, E.L.-H., El-Touhamy, A. & Shonouda, M. Ecological, morphological, and histological studies on Blaps polycresta (Coleoptera: Tenebrionidae) as biomonitors of cadmium soil pollution. Environ. Sci. Pollut. Res. Int. 22, 14104–14115 (2015).
Google Scholar
Siekierska, E. & Brzozowa, M. Cadmium effect on the seminal vesicles structure and spermatogenesis in the earthworm Dendrobaena veneta (Rosa). In 8th International Symposium on Earthworm Ecology. Book of abstracts, 231 (2006).
Siekierska, E. & Brzozowa, M. Changes in primary and secondary spermatocytes in seminal vesicles in the earthworm Dendrobaena veneta (Rosa) after 10 days of cadmium exposure. Acta Biol. Cracov. Bot. 50, 68 (2008).
Brzozowa, M. Wpływ kadmu na przebieg spermiogenezy u dżdżownicy Dendrobaena veneta (Rosa). PhD Thesis, University of Silesia in Katowice Poland (2009).
Papathanassiou, E. Cadmium accumulation and ultrastructural alterations in oogenesis of the prawn Palaemon serratus (Pennant). Bull. Environ. Contam. Toxicol. 36, 192–198 (1986).
Google Scholar
Au, D. W. T., Chiang, M. W. L. & Wu, R. Effect of cadmium and phenol on mortality and ultrastructure of sea urchin and mussel spermatozoa. Arcg. Environ. Contam. Toxicol. 38, 455–463 (2000).
Google Scholar
Au, D. W. T., Lee, C. Y., Chan, K. L. & Wu, R. Reproductive impairment of sea urchins upon chronic exposure to cadmium. Part I: Effects on gamete quality. Environ. Pollut. 111, 1–9 (2001).
Google Scholar
Au, D. W. T., Reunov, A. A. & Wu, R. Reproductive impairment of sea urchins upon chronic exposure to cadmium. Part II: Effects on sperm development. Environ. Pollut. 111, 11–20 (2001).
Google Scholar
Eckelbarger, K. J. Diversity of metazoan ovaries and vitellogenic mechanisms – implications for life history theory. Proc. Biol. Soc. Wash. 107, 193–218 (1994).
Suzuki, K. T., Yamamura, M. & Mori, T. Cadmium-binding proteins induced in earthworm. Arch. Environ. Contam. Toxicol. 9, 415–424 (1980).
Google Scholar
Maroni, G., Wise, J., Young, J. E. & Otto, E. Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster. Genetics 117, 739–744 (1987).
Google Scholar
Luo, M., Finet, C., Cong, H., Wei, H. & Chung, H. The evolution of insect metallothioneins. Proc. R. Soc. B 287, 20202189 (2020).
Google Scholar
Turbeck, B. O. A study of the concentrically laminated concretions, ‘spherites’, in the regenerative cells of the midgut of Lepidopterous larvae. Tissue Cell. 6, 627–640 (1974).
Google Scholar
Cruz-Landim, C. Localization of calcium and acid phosphatase in the Malpighian tubules of nurse workers of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Apidae, Meliponini). Biosci. J. 16, 87–99 (2000).
Lipovšek, S., Letofsky-Papst, I., Hofer, F., Pabst, M. A. & Devetak, D. Application of analytical electron microscopic methods to investigate the function of spherites in the midgut of the larval antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Microsc. Res. Tech. 75, 397–407 (2012).
Google Scholar
Pinheiro, D. O., Conte, H. & Gregório, E. A. Spherites in the midgut epithelial cells of the sugarcane borer parasitized by Cotesia flavipes. Biocell 32, 61–67 (2008).
Google Scholar
Rost-Roszkowska, M. M., Kszuk-Jendrysik, M., Marchewka, A. & Poprawa, I. Fine structure of the midgut epithelium in the millipede Telodeinopus aoutii (Myriapoda, Diplopoda) with special emphasis on epithelial regeneration. Protoplasma 255, 43–55 (2018).
Google Scholar
Lipovšek, S. et al. Ultrastructure of spherites in the midgut diverticula and Malpighian tubules of the harvestman Amilenus aurantiacus during the winter diapause. Histochem. Cell Biol. 157, 107–118 (2022).
Google Scholar
Kramarz, P. Dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 2. The centipede Lithobius mutabilis Koch. Bull. Environ. Contam. Toxicol. 63, 538–545 (1999).
Google Scholar
Rost-Roszkowska, M. M. et al. Structure of the midgut epithelium in four diplopod species: Histology, histochemistry and ultrastructure. Arthropod Syst. Phylogeny 79, 295–308 (2021).
Google Scholar
Köhler, H.-R. Localization of metals in cells of saprophagous soil arthropods (Isopoda, Diplopoda, Collembola). Microsc. Res. Tech. 56, 393–401 (2002).
Google Scholar
Cervera, A., Maymó, A. C., Martínez-Pardo, R. & Garcerá, M. D. Vitellogenesis inhibition in Oncopeltus fasciatus females (Heteroptera: Lygaeidae) exposed to cadmium. J. Insect Physiol. 51, 895–911 (2005).
Google Scholar
Cervera, A., Maymó, A. C., Martínez-Pardo, R. & Garcerá, M. D. Vitellogenin polypeptide levels in one susceptible and one cadmium-resistant strain of Oncopeltus fasciatus (Heteroptera: Lygaeidae), and its role in cadmium resistance. J. Insect Physiol. 52, 158–168 (2006).
Google Scholar
Sehgal, A., Osgood, C. & Zimmering, S. Aneuploid in Drosophila. III: Aneuploidogens inhibit in vitro assembly of taxol-purified Drosophila microtubules. Environ. Mol. Mutagen. 16, 217–224 (1990).
Google Scholar
Li, W., Zhao, Y. & Cou, I. N. Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77, 65–79 (1993).
Google Scholar
dos Santos, D. C., Gregorio, E. A. & Moreli Silva de Moraes, R. L. Programmed cell death during early oogenesis in the Diatraea saccharalis germarium. Acta Microsc. 16, 311–312 (2007).
Hoeppner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202–206 (2001).
Google Scholar
Hikim, A. P. S. et al. Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology 144, 3167–3175 (2003).
Google Scholar
Russell, L. D., Chiarini-Garcia, H., Korsmeyer, S. J. & Knudson, C. M. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol. Reprod. 66, 950–958 (2002).
Google Scholar
Shaha, C., Tripathi, R. & Mishra, D. P. Male germ cell apoptosis: Regulation and biology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1501–1515 (2010).
Google Scholar
Devine, P. J., Payne, C. M., McCuskey, M. K. & Hoyer, P. B. Ultrastructural evaluation of oocytes during atresia in rat ovarian follicles. Biol. Reprod. 63, 1245–1252 (2000).
Google Scholar
Hussein, M. R. Apoptosis in the ovary: Molecular mechanisms. Hum. Reprod. Update 11, 162–177 (2005).
Google Scholar
Miller, M. A., Technau, U., Smith, K. M. & Steele, R. E. Oocyte development in Hydra involves selection from competent precursor cells. Dev. Biol. 224, 326–338 (2000).
Google Scholar
Matova, N. & Cooley, L. Comparative aspects of animal oogenesis. Dev. Biol. 231, 291–320 (2001).
Google Scholar
Technau, U., Miller, M. A., Bridge, D. & Steele, R. E. Arrested apoptosis of nurse cells during Hydra oogenesis and embryogenesis. Dev. Biol. 260, 191–206 (2003).
Google Scholar
Mpakou, V. E., Nezis, I. P., Stravopodis, D. J., Margaritis, L. H. & Papassideri, I. S. Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev. Growth Differ. 48, 419–428 (2006).
Google Scholar
Mpakou, V. E. et al. Different modes of programmed cel death during oogenesis of the silkmoth Bombyx mori. Autophagy 4, 97–100 (2008).
Google Scholar
Mpakou, V. E. et al. Programmed cell death of the ovarian nurse cells during oogenesis of the ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae). Dev. Growth Differ. 53, 804–815 (2011).
Google Scholar
Poprawa, I., Hyra, M., Kszuk-Jendrysik, M. & Rost-Roszkowska, M. M. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae). Micron 70, 26–33 (2015).
Google Scholar
Janelt, K., Jezierska, M. & Poprawa, I. The female reproductive system and oogenesis in Thulinius ruffoi (Tardigrada, Eutardigrada, Isohypsibiidae). Arthropod. Struct. Dev. 50, 53–63 (2019).
Google Scholar
Mooyottu, S., Anees, C. & Cherian, S. Ovarian stem cells and neo-oogenesis: A breakthrough in reproductive biology research. Vet. World 4, 89–91 (2011).
Tiwari, M. et al. Apoptosis in mammalian oocytes: A review. Apoptosis 20, 1019–1025 (2015).
Google Scholar
Xiu, Y.-R. & Yang, W.-X. Roles of three Es-Caspases during spermatogenesis and cadmium-induced apoptosis in Eriocheir sinensis. Aging 10, 1146–1165 (2018).
Google Scholar
Redza-Dutordoir, M. & Averill-Bates, D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863, 2977–2992 (2016).
Google Scholar
Sonakowska, L. et al. Cell death in the epithelia of the intestine and hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS ONE 11, e0147582 (2016).
Google Scholar
Włodarczyk, A. et al. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca). PLoS ONE 12, e0173563 (2017).
Google Scholar
Zorova, L. D. et al. Mitochondrial membrane potential. Anal. Biochem. 552, 50–59 (2018).
Google Scholar
Ossola, J. O. & Tomaro, M. L. Heme oxygenase induction by cadmium chloride: Evidence for oxidative stress involvement. Toxicology 104, 141–147 (1995).
Google Scholar
Levine, B. & Klionsky, D. J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell. 6, 463–477 (2004).
Google Scholar
Kourtis, N. & Tavernarakis, N. Autophagy and cell death in model organisms. Cell Death Differ. 16, 21–30 (2009).
Google Scholar
Kliosnky, D. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).
Google Scholar
Kliosnky, D. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382 (2021).
Google Scholar
Velentzas, A. D., Nezis, I. P., Stravopodis, D. J., Papassideri, I. S. & Margaritis, L. H. Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis. Autophagy 3, 130–132 (2007).
Google Scholar
Lipovšek, S. et al. Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn. Histochem. Cell Biol. 149, 245–260 (2018).
Google Scholar
Rost-Roszkowska, M. M. et al. Autophagy and apoptosis in the midgut epithelium of millipedes. Microsc. Microanal. 25, 1004–1016 (2019).
Google Scholar
Nezis, I. P. et al. Autophagy as a trigger for cell death: Autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila. Autophagy 6, 1214–1215 (2010).
Google Scholar
Rost-Roszkowska, M. M., Janelt, K. & Poprawa, I. The role of autophagy in the midgut epithelium of Parachela (Tardigrada). Zoomorphology 137, 501–509 (2018).
Google Scholar
Leist, M., Single, B., Castoldi, A. F., Kühnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481–1486 (1997).
Google Scholar
Nikoletopoulou, V., Markaki, M., Palikaras, K. & Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta. 1833, 3448–3459 (2013).
Google Scholar
Source: Ecology - nature.com