in

Assessing placement bias of the global river gauge network

  • Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article 
    CAS 

    Google Scholar 

  • Ruhi, A., Messager, M. L. & Olden, J. D. Tracking the pulse of the Earth’s fresh waters. Nat. Sustain. 1, 198–203 (2018).

    Article 

    Google Scholar 

  • Pearson, C. Short- and medium-term climate information for water management. World Meteorol. Organ. Bull. 57, 173–177 (2008).

    Google Scholar 

  • Tetzlaff, D., Carey, S. K., McNamara, J. P., Laudon, H. & Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 53, 2598–2604 (2017).

    Article 

    Google Scholar 

  • Carlisle, D. M., Wolock, D. M. & Meador, M. R. Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Front. Ecol. Environ. 9, 264–270 (2011).

    Article 

    Google Scholar 

  • Shrestha, S., Kazama, F. & Newham, L. T. H. A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data. Environ. Model. Softw. 23, 182–194 (2008).

    Article 

    Google Scholar 

  • Lepistö, A., Futter, M. N. & Kortelainen, P. Almost 50 years of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed. Glob. Change Biol. 20, 1225–1237 (2014).

    Article 

    Google Scholar 

  • Hester, G., Ford, D., Carsell, K., Vertucci, C. & Stallings, E. A. Flood Management Benefits of USGS Streamgaging Program (National Hydrologic Warning Council, 2006).

  • Xu, H., Xu, C.-Y., Chen, H., Zhang, Z. & Li, L. Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J. Hydrol. 505, 1–12 (2013).

    Article 

    Google Scholar 

  • Kiang, J. E., Stewart, D. W., Archfield, S. A., Osborne, E. B. & Eng, K. A National Streamflow Network Gap Analysis (USGS, 2013).

  • Deweber, J. T. et al. Importance of understanding landscape biases in USGS gage locations: implications and solutions for managers. Fisheries 39, 155–163 (2014).

    Article 

    Google Scholar 

  • Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).

    Article 

    Google Scholar 

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS 
    Article 

    Google Scholar 

  • Olden, J. D. et al. Hydrologic classification of Tanzanian rivers to support national water resource policy. Ecohydrology. https://doi.org/10.1002/eco.2282 (2021).

  • Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).

    Article 

    Google Scholar 

  • Yamazaki, D. et al. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).

    Article 

    Google Scholar 

  • Beck, H. E. et al. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9,372 catchments. J. Clim. 33, 1299–1315 (2020).

    Article 

    Google Scholar 

  • Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM)—part 1: the production of a daily streamflow archive and metadata. Earth Syst. Sci. Data 10, 765–785 (2018).

    Article 

    Google Scholar 

  • Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).

    Article 

    Google Scholar 

  • Dobrushin, R. L. Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–486 (1970).

    Article 

    Google Scholar 

  • Schefzik, R., Flesch, J. & Goncalves, A. Fast identification of differential distributions in single-cell RNA-sequencing data with waddR. Bioinformatics 37, 3204–3211 (2021).

    CAS 
    Article 

    Google Scholar 

  • Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article 

    Google Scholar 

  • Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).

    CAS 
    Article 

    Google Scholar 

  • Colvin, S. A. R. et al. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem Services. Fisheries 44, 73–91 (2019).

    Article 

    Google Scholar 

  • Chen, K. & Olden, J. D. Threshold responses of riverine fish communities to land use conversion across regions of the world. Glob. Change Biol. 26, 4952–4965 (2020).

    Article 

    Google Scholar 

  • Pardo, I. et al. The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci. Total Environ. 420, 33–42 (2012).

    CAS 
    Article 

    Google Scholar 

  • Sauquet, E. et al. Classification and trends in intermittent river flow regimes in Australia, northwestern Europe and USA: a global perspective. J. Hydrol. 597, 126170 (2021).

    Article 

    Google Scholar 

  • Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10, 809–815 (2017).

    CAS 
    Article 

    Google Scholar 

  • Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58, 403–414 (2008).

    Article 

    Google Scholar 

  • Wilhite, D. A. in Coping with Drought Risk in Agriculture and Water Supply Systems: Drought Management and Policy Development in the Mediterranean, Vol. 26 (eds. Iglesias, A. et al.) 3–19 (Springer Science and Business Media, 2009).

  • Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 
    Article 

    Google Scholar 

  • Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184 (1995).

    Article 

    Google Scholar 

  • Hammond, J. C. et al. Spatial patterns and drivers of nonperennial flow regimes in the contiguous United States. Geophys. Res. Lett. 48, e2020GL090794 (2021).

    Article 

    Google Scholar 

  • Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    CAS 
    Article 

    Google Scholar 

  • Busch, M. H. et al. What’s in a name? Patterns, trends, and suggestions for defining non-perennial rivers and streams. Water 12, 1980 (2020).

    Article 

    Google Scholar 

  • Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).

    Article 

    Google Scholar 

  • Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).

    CAS 
    Article 

    Google Scholar 

  • Beaufort, A., Lamouroux, N., Pella, H., Datry, T. & Sauquet, E. Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks. Hydrol. Earth Syst. Sci. 22, 3033–3051 (2018).

    Article 

    Google Scholar 

  • Argerich, A. et al. Comprehensive multiyear carbon budget of a temperate headwater stream: carbon budget of a headwater stream. J. Geophys. Res. Biogeosci. 121, 1306–1315 (2016).

    CAS 
    Article 

    Google Scholar 

  • Molden, D. J., Shrestha, A. B., Nepal, S. & Immerzeel, W. W. in Water Security, Climate Change and Sustainable Development (eds. Biswas, A. K. & Tortajada, C.) 65–82 (Springer, 2016).

  • Kaletová, T. et al. Relevance of intermittent rivers and streams in agricultural landscape and their impact on provided ecosystem services—a Mediterranean case study. Int. J. Environ. Res. Public Health 16, 2693 (2019).

    Article 

    Google Scholar 

  • Zimmer, M. A. et al. Zero or not? Causes and consequences of zero-flow stream gage readings. WIREs Water 7, e1436 (2020).

    Article 

    Google Scholar 

  • Wine, M. L. Toward strong science to support equitable water sharing in securitized transboundary watersheds. Biologia 9, 907–915 (2020).

    Article 

    Google Scholar 

  • Alsdorf, D. E. GEOPHYSICS: tracking fresh water from space. Science 301, 1491–1494 (2003).

    CAS 
    Article 

    Google Scholar 

  • Benstead, J. P. & Leigh, D. S. An expanded role for river networks. Nat. Geosci. 5, 678–679 (2012).

    CAS 
    Article 

    Google Scholar 

  • Allen, D. C. et al. Citizen scientists document long-term streamflow declines in intermittent rivers of the desert southwest, USA. Freshw. Sci. https://doi.org/10.1086/701483 (2019).

  • Joo, H. et al. Optimal stream gauge network design using entropy theory and importance of stream gauge stations. Entropy 21, 991 (2019).

    Article 

    Google Scholar 

  • Vörösmarty, C. et al. Global water data: a newly endangered species. Eos 82, 54–58 (2001).

    Article 

    Google Scholar 

  • Jordahl, K. et al. Geopandas/geopandas. Zenodo https://doi.org/10.5281/zenodo.3946761 (2020).

  • Lin, P., Pan, M., Wood, E. F., Yamazaki, D. & Allen, G. H. A new vector-based global river network dataset accounting for variable drainage density. Sci. Data 8, 28 (2021).

    Article 

    Google Scholar 

  • Yu, S. et al. Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks. Hydrol. Earth Syst. Sci. 24, 5279–5295 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193 (2010).

    Article 

    Google Scholar 

  • Flow/No Flow Observations with Discharge Data from Probabilistic Stream Surveys (US EPA Office of Research and Development, 2021).

  • Rosenbaum, P. R. & Rubin, D. B. The bias due to incomplete matching. Biometrics 41, 103–116 (1985).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment

    Role of trade agreements in the global cereal market and implications for virtual water flows