Stibig, H. J., Achard, F., Carboni, S., Raši, R. & Miettinen, J. Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences 11, 247–258. https://doi.org/10.5194/bg-11-247-2014 (2014).
Google Scholar
Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: Logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540. https://doi.org/10.1016/j.tree.2013.04.005 (2013).
Google Scholar
Zeng, Z. et al. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562. https://doi.org/10.1038/s41561-018-0166-9 (2018).
Google Scholar
Imai, N., Furukawa, T., Tsujino, R., Kitamura, S. & Yumoto, T. Correction: Factors affecting forest area change in Southeast Asia during 1980–2010. PLoS ONE 13, e0199908. https://doi.org/10.1371/journal.pone.0199908 (2018).
Google Scholar
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).
Google Scholar
McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6, 295–300. https://doi.org/10.1038/nclimate2873 (2015).
Google Scholar
Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295. https://doi.org/10.1038/nature12350 (2013).
Google Scholar
Barbeta, A. et al. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biol. 21, 1213–1225. https://doi.org/10.1111/gcb.12785 (2015).
Google Scholar
Mueller, R. C. et al. Differential tree mortality in response to severe drought: Evidence for long-term vegetation shifts. J. Ecol. 93, 1085–1093. https://doi.org/10.1111/j.1365-2745.2005.01042.x (2005).
Google Scholar
Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 108, 1474–1478. https://doi.org/10.1073/pnas.1010070108 (2011).
Google Scholar
Shaw, J. D., Steed, B. E. & DeBlander, L. T. Forest Inventory and Analysis (FIA) annual inventory answers the question: What is happening to pinyon-juniper woodlands?. J. For. 103, 280–285 (2005).
Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489. https://doi.org/10.1017/s0266467411000253 (2011).
Google Scholar
Lee, Y. K. et al. Differences of tree species composition and microclimate between a mahogany(swietenia macrophyllaking) plantation and a secondary forest in Mt. Makiling, Philippines. For. Sci. Technol. 2, 1–12. https://doi.org/10.1080/21580103.2006.9656293 (2006).
Google Scholar
Lebrija-Trejos, E., Perez-Garcia, E. A., Meave, J. A., Bongers, F. & Poorter, L. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91, 386–398. https://doi.org/10.1890/08-1449.1 (2010).
Google Scholar
Heithecker, T. D. & Halpern, C. B. Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. For. Ecol. Manag. 248, 163–173. https://doi.org/10.1016/j.foreco.2007.05.003 (2007).
Google Scholar
Marthews, T. R., Burslem, D. F. R. P., Paton, S. R., Yangüez, F. & Mullins, C. E. Soil drying in a tropical forest: Three distinct environments controlled by gap size. Ecol. Model. 216, 369–384. https://doi.org/10.1016/j.ecolmodel.2008.05.011 (2008).
Google Scholar
Pineda-Garcia, F., Paz, H. & Meinzer, F. C. Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ. 36, 405–418. https://doi.org/10.1111/j.1365-3040.2012.02582.x (2013).
Google Scholar
Bretfeld, M., Ewers, B. E. & Hall, J. S. Plant water use responses along secondary forest succession during the 2015–2016 El Nino drought in Panama. New Phytol. 219, 885–899. https://doi.org/10.1111/nph.15071 (2018).
Google Scholar
Matheny, A. M. et al. Contrasting strategies of hydraulic control in two codominant temperate tree species. Ecohydrology https://doi.org/10.1002/eco.1815 (2016).
Google Scholar
Pineda-Garcia, F., Paz, H., Meinzer, F. C. & Angeles, G. Exploiting water versus tolerating drought: Water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol. 36, 208–217. https://doi.org/10.1093/treephys/tpv124 (2016).
Google Scholar
Powell, T. L. et al. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biol. 23, 4280–4293. https://doi.org/10.1111/gcb.13731 (2017).
Google Scholar
Ruiz-Benito, P. et al. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biol. 23, 4162–4176. https://doi.org/10.1111/gcb.13728 (2017).
Google Scholar
Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539. https://doi.org/10.1038/s41586-018-0240-x (2018).
Google Scholar
Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161. https://doi.org/10.1111/pce.12141 (2014).
Google Scholar
McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x (2008).
Google Scholar
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122. https://doi.org/10.1038/nature15539 (2015).
Google Scholar
Lazar, T., Taiz, L. & Zeiger, E. Plant physiology. 3rd edn. Ann. Bot. 91, 750–751. https://doi.org/10.1093/aob/mcg079 (2003).
Google Scholar
Steppe, K. The potential of the tree water potential. Tree Physiol. 38, 937–940. https://doi.org/10.1093/treephys/tpy064 (2018).
Google Scholar
Johnson, D., Katul, G. G. & Domec, J. C. Catastrophic hydraulic failure and tipping points in plants. Plant Cell Environ. (2022).
Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291. https://doi.org/10.1038/s41559-017-0248-x (2017).
Google Scholar
Skelton, R. P., West, A. G. & Dawson, T. E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl. Acad. Sci. USA 112, 5744–5749. https://doi.org/10.1073/pnas.1503376112 (2015).
Google Scholar
Domec, J.-C. et al. Conversion of natural forests to managed forest plantations decreases tree resistance to prolonged droughts. For. Ecol. Manag. 355, 58–71. https://doi.org/10.1016/j.foreco.2015.04.012 (2015).
Google Scholar
Maherali, H., Pockman, W. T. & Jackson, R. B. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199. https://doi.org/10.1890/02-0538 (2004).
Google Scholar
Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. New Phytol. 223, 1253–1266. https://doi.org/10.1111/nph.15909 (2019).
Google Scholar
Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Global Change Biol. 26, 3569–3584. https://doi.org/10.1111/gcb.15040 (2020).
Google Scholar
Nolf, M. et al. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant Cell Environ. 38, 2652–2661. https://doi.org/10.1111/pce.12581 (2015).
Google Scholar
Trueba, S. et al. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell Environ. 40, 277–289. https://doi.org/10.1111/pce.12859 (2017).
Google Scholar
Zhu, S. D., Chen, Y. J., Fu, P. L. & Cao, K. F. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiol. 37, 1469–1477. https://doi.org/10.1093/treephys/tpx094 (2017).
Google Scholar
Chen, Y. J. et al. Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas. Funct. Ecol. 31, 306–317. https://doi.org/10.1111/1365-2435.12724 (2016).
Google Scholar
Tan, F.-S. et al. Hydraulic safety margins of co-occurring woody plants in a tropical karst forest experiencing frequent extreme droughts. Agr. Forest Meteorol. https://doi.org/10.1016/j.agrformet.2020.108107 (2020).
Google Scholar
Markesteijn, L., Iraipi, J., Bongers, F. & Poorter, L. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. J. Trop. Ecol. 26, 497–508. https://doi.org/10.1017/s0266467410000271 (2010).
Google Scholar
Mitchell, P. J., Veneklaas, E. J., Lambers, H. & Burgess, S. S. Leaf water relations during summer water deficit: Differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell Environ. 31, 1791–1802. https://doi.org/10.1111/j.1365-3040.2008.01882.x (2008).
Google Scholar
Baltzer, J. L., Davies, S. J., Bunyavejchewin, S. & Noor, N. S. M. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Funct. Ecol. 22, 221–231. https://doi.org/10.1111/j.1365-2435.2007.01374.x (2008).
Google Scholar
Kursar, T. A. et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 23, 93–102. https://doi.org/10.1111/j.1365-2435.2008.01483.x (2009).
Google Scholar
Engelbrecht, B. M. J., Tyree, M. T. & Kursar, T. A. Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. J. Trop. Ecol. 23, 497–500. https://doi.org/10.1017/s026646740700421x (2007).
Google Scholar
Blackman, C. J. et al. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Tree Physiol. 39, 910–924. https://doi.org/10.1093/treephys/tpz016 (2019).
Google Scholar
Bucci, S. J. et al. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees. Trees 19, 296–304. https://doi.org/10.1007/s00468-004-0391-2 (2004).
Google Scholar
Prado, C. H. B. A., Wenhui, Z., Cardoza Rojas, M. H. & Souza, G. M. Seasonal leaf gas exchange and water potential in a woody cerrado species community. Braz. J. Plant Physiol. 16, 7–16. https://doi.org/10.1590/s1677-04202004000100002 (2004).
Google Scholar
Fetcher, N., Oberbauer, S. F. & Strain, B. R. Vegetation effects on microclimate in lowland tropical forest in Costa Rica. Int. J. Biometeorol. 29, 145–155. https://doi.org/10.1007/bf02189035 (1985).
Google Scholar
McCarthy, J. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 9, 1–59. https://doi.org/10.1139/a00-012 (2001).
Google Scholar
Zhu, S.-D. & Cao, K.-F. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol. 204, 295–304. https://doi.org/10.1007/s11258-009-9592-5 (2009).
Google Scholar
Sperry, J. S., Hacke, U. G., Oren, R. & Comstock, J. P. Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ. 25, 251–263. https://doi.org/10.1046/j.0016-8025.2001.00799.x (2002).
Google Scholar
Choat, B., Sack, L. & Holbrook, N. M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x (2007).
Google Scholar
Vinya, R. et al. Xylem cavitation vulnerability influences tree species’ habitat preferences in miombo woodlands. Oecologia 173, 711–720. https://doi.org/10.1007/s00442-013-2671-2 (2013).
Google Scholar
Vander Willigen, C., Sherwin, H. W. & Pammenter, N. W. Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions. New Phytol. 145, 51–59. https://doi.org/10.1046/j.1469-8137.2000.00549.x (2000).
Google Scholar
Domec, J. C. et al. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: Impact on stomatal control of plant water status. Plant Cell Environ. 29, 26–35. https://doi.org/10.1111/j.1365-3040.2005.01397.x (2006).
Google Scholar
Barnard, D. M. et al. Climate-related trends in sapwood biophysical properties in two conifers: Avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant Cell Environ. 34, 643–654. https://doi.org/10.1111/j.1365-3040.2010.02269.x (2011).
Google Scholar
Rosner, S., Heinze, B., Savi, T. & Dalla-Salda, G. Prediction of hydraulic conductivity loss from relative water loss: New insights into water storage of tree stems and branches. Physiol. Plant. 165, 843–854. https://doi.org/10.1111/ppl.12790 (2019).
Google Scholar
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x (2011).
Google Scholar
Cartwright, J. M., Littlefield, C. E., Michalak, J. L., Lawler, J. J. & Dobrowski, S. Z. Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA. Sci. Rep. 10, 18486. https://doi.org/10.1038/s41598-020-75273-5 (2020).
Google Scholar
Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305–311. https://doi.org/10.1007/s00468-004-0392-1 (2004).
Google Scholar
Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum–a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211. https://doi.org/10.1371/journal.pone.0109211 (2014).
Google Scholar
Brockelman, W. Y., Nathalang, A. & Maxwell, J. F. Mo Singto Forest Dynamics Plot: Flora and Ecology (National Science and Technology Development Agency, 2017).
Zhang, Q. W., Zhu, S. D., Jansen, S., Cao, K. F. & McCulloh, K. Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China. Funct. Ecol. 35, 566–577. https://doi.org/10.1111/1365-2435.13731 (2020).
Google Scholar
Ishida, A. et al. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand. Tree Physiol. 30, 935–945. https://doi.org/10.1093/treephys/tpq025 (2010).
Google Scholar
Nardini, A., Battistuzzo, M. & Savi, T. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. 200, 322–329. https://doi.org/10.1111/nph.12288 (2013).
Google Scholar
Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. https://doi.org/10.1038/nature11688 (2012).
Google Scholar
Brodribb, T. J. Progressing from “functional” to mechanistic traits. New Phytol. 215, 9–11. https://doi.org/10.1111/nph.14620 (2017).
Google Scholar
Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 221, 1457–1465. https://doi.org/10.1111/nph.15463 (2019).
Google Scholar
Popradit, A. et al. Anthropogenic effects on a tropical forest according to the distance from human settlements. Sci. Rep. 5, 14689. https://doi.org/10.1038/srep14689 (2015).
Google Scholar
Hérault, B. & Gourlet-Fleury, S. In Climate Change and Agriculture Worldwide (ed. Torquebiau, E.) 183–196 (Springer, 2016).
Google Scholar
Elliott, S. et al. Selecting framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. For. Ecol. Manag. 184, 177–191. https://doi.org/10.1016/s0378-1127(03)00211-1 (2003).
Google Scholar
Vieira, D. L. M. & Scariot, A. Principles of natural regeneration of tropical dry forests for restoration. Restor. Ecol. 14, 11–20. https://doi.org/10.1111/j.1526-100X.2006.00100.x (2006).
Google Scholar
Hérault, B. & Piponiot, C. Key drivers of ecosystem recovery after disturbance in a neotropical forest. For. Ecosyst. 5, 2. https://doi.org/10.1186/s40663-017-0126-7 (2018).
Google Scholar
Davies, S. J. et al. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907. https://doi.org/10.1016/j.biocon.2020.108907 (2021).
Google Scholar
Chanthorn, W. et al. Viewing tropical forest succession as a three-dimensional dynamical system. Theor. Ecol. 9, 163–172. https://doi.org/10.1007/s12080-015-0278-4 (2015).
Google Scholar
Chanthorn, W., Hartig, F. & Brockelman, W. Y. Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. For. Ecol. Manag. 404, 100–107. https://doi.org/10.1016/j.foreco.2017.08.001 (2017).
Google Scholar
Rodtassana, C. et al. Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest. Ecol. Evol. 11, 15430–15443. https://doi.org/10.1002/ece3.8248 (2021).
Google Scholar
Tor-ngern, P. et al. Variation of leaf-level gas exchange rates and leaf functional traits of dominant trees across three successional stages in a Southeast Asian tropical forest. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119101 (2021).
Google Scholar
Zhu, S. D., Song, J. J., Li, R. H. & Ye, Q. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant Cell Environ. 36, 879–891. https://doi.org/10.1111/pce.12024 (2013).
Google Scholar
Martin-StPaul, N. K. et al. How reliable are methods to assess xylem vulnerability to cavitation? The issue of “open vessel” artifact in oaks. Tree Physiol. 34, 894–905. https://doi.org/10.1093/treephys/tpu059 (2014).
Google Scholar
Ennajeh, M., Simoes, F., Khemira, H. & Cochard, H. How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms?. Physiol. Plant. 142, 205–210. https://doi.org/10.1111/j.1399-3054.2011.01470.x (2011).
Google Scholar
Pérez-Harguindeguy, N. et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64, 715–716. https://doi.org/10.1071/bt12225_co (2016).
Google Scholar
Ewers, F. W. & Fisher, J. B. Techniques for measuring vessel lengths and diameters in stems of woody plants. Am. J. Bot. 76, 645–656. https://doi.org/10.1002/j.1537-2197.1989.tb11360.x (1989).
Google Scholar
Gao, H. et al. Vessel-length determination using silicone and air injection: Are there artifacts?. Tree Physiol. 39, 1783–1791. https://doi.org/10.1093/treephys/tpz064 (2019).
Google Scholar
Sperry, J. S. & Saliendra, N. Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ. 17, 1233–1241. https://doi.org/10.1111/j.1365-3040.1994.tb02021.x (1994).
Google Scholar
Melcher, P. J. et al. Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods Ecol. Evol. 3, 685–694. https://doi.org/10.1111/j.2041-210X.2012.00204.x (2012).
Google Scholar
Edwards, W. R. N. & Jarvis, P. G. Relations between water content, potential and permeability in stems of conifers. Plant Cell Environ. 5, 271–277. https://doi.org/10.1111/1365-3040.ep11572656 (1982).
Google Scholar
Sperry, J. S. & Ikeda, T. Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol. 17, 275–280. https://doi.org/10.1093/treephys/17.4.275 (1997).
Google Scholar
Pammenter, N. W. & Vander Willigen, C. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol. 18, 589–593. https://doi.org/10.1093/treephys/18.8-9.589 (1998).
Google Scholar
Domec, J.-C. & Gartner, B. L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15, 204–214. https://doi.org/10.1007/s004680100095 (2001).
Google Scholar
Source: Ecology - nature.com