Schwenk, K., Padilla, D. K., Bakken, G. S. & Full, R. J. Grand challenges in organismal biology. Integr. Comp. Biol. 49, 7–14. https://doi.org/10.1093/icb/icp034 (2009).
Google Scholar
Chapman, L. J., Galis, F. & Shinn, J. Phenotypic plasticity and the possible role of genetic assimilation: Hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecol. Lett. 3, 387–393. https://doi.org/10.1046/j.1461-0248.2000.00160.x (2000).
Google Scholar
Crispo, E. & Chapman, L. J. Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish. J. Evol. Biol. 23, 2091–2103. https://doi.org/10.1111/j.1420-9101.2010.02069.x (2010).
Google Scholar
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitan-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B-Biol. Sci. 374, 20180174 (2019).
Google Scholar
Schmidt-Nielsen, K. Animal physiology: adaptation and environment 4th edn. (Cambridge University Press, 1990).
Willmer, P., Stone, G. & Johnston, I. A. Environmental physiology of animals (Blackwell, 2000).
Begon, M., Townsend, C. R. & Harper, J. L. Ecology from individuals to ecosystems 4th edn. (Blackwell Publishing, 2006).
Johnston, I. A. & Bennett, A. F. Animals and temperature. Phenotypic and Evolutionary Adaptation (Cambridge University Press, 2008).
Atkinson, D. Temperature and organism size – a biological law for ectotherms. Adv. Ecol. Res. 25, 1–58 (1994).
Google Scholar
Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239. https://doi.org/10.1016/s0169-5347(97)01058-6 (1997).
Google Scholar
Bergmann, C. Uber die verhaltnisse der warmeokonomie der thiere zuihrer grosse. Gottinger Studien 1, 595–708 (1847).
Blanckenhorn, W. U. & Demont, M. Bergmann and converse Bergmann latitudinal clines in Arthropods: two ends of a continuum?. Integr. Comp. Biol. 44, 413–424 (2004).
Google Scholar
Blackburn, T. M., Gaston, K. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174 (1999).
Google Scholar
Berrigan, D. & Charnov, E. L. Reaction norms for age and size at maturity in response to temperature—a puzzle for life historians. Oikos 70, 474–478 (1994).
Google Scholar
Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).
Google Scholar
Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life–history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).
Google Scholar
Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve paremeters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).
Google Scholar
Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiorboe, T. A global synthesis of seasonal temperature-size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999. https://doi.org/10.1111/geb.12460 (2016).
Google Scholar
Kiełbasa, A., Walczyńska, A., Fiałkowska, E., Pajdak-Stós, A. & Kozłowski, J. Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule. Ecol. Evol. 4, 4678–4689. https://doi.org/10.1002/ece3.1292 (2014).
Google Scholar
Stoks, R., Geerts, A. N. & De Meester, L. Evolutionary and plastic responses of freshwater invertebrates to climate change: Realized patterns and future potential. Evol. Appl. 7, 42–55. https://doi.org/10.1111/eva.12108 (2014).
Google Scholar
Hassall, C. Time stress and temperature explain continental variation in damselfly body size. Ecography 36, 894–903. https://doi.org/10.1111/j.1600-0587.2013.00018.x (2013).
Google Scholar
Horne, C. R., Hirst, A. G. & Atkinson, D. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol. Lett. 18, 327–335. https://doi.org/10.1111/ele.12413 (2015).
Google Scholar
Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116. https://doi.org/10.1038/s41586-018-0140-0 (2018).
Google Scholar
Rollinson, N. & Rowe, L. Oxygen limitation at the larval stage and the evolution of maternal investment per offspring in aquatic environments. Am. Nat. 191, 604–619. https://doi.org/10.1086/696857 (2018).
Google Scholar
Santilli, J. & Rollinson, N. Toward a general explanation for latitudinal clines in body size among chelonians. Biol. J. Lin. Soc. 124, 381–393. https://doi.org/10.1093/biolinnean/bly054 (2018).
Google Scholar
Walczyńska, A. & Sobczyk, Ł. The underestimated role of temperature–oxygen relationship in large-scale studies on size-to-temperature response. Ecol. Evol. 7, 7434–7441. https://doi.org/10.1002/ece3.3263 (2017).
Google Scholar
Czarnoleski, M., Ejsmont-Karabin, J., Angilletta, M. J. Jr. & Kozlowski, J. Colder rotifers grow larger but only in oxygenated waters. Ecosphere https://doi.org/10.1890/es15-00024.1 (2015).
Google Scholar
Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. U.S.A. 109, 19310–19314. https://doi.org/10.1073/pnas.1210460109 (2012).
Google Scholar
Woods, H. A. Egg-mass size and cell size: Effects of temperature on oxygen distribution. Am. Zool. 39, 244–252 (1999).
Google Scholar
Verberk, W. C. E. P., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: Partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).
Google Scholar
Berner, R. A., VandenBrooks, J. M. & Ward, P. D. Evolution—Oxygen and evolution. Science 316, 557–558. https://doi.org/10.1126/science.1140273 (2007).
Google Scholar
Verberk, W. C. E. P. & Atkinson, D. Why polar gigantism and Palaeozoic gigantism are not equivalent: Effects of oxygen and temperature on the body size of ectotherms. Funct. Ecol. 27, 1275–1285. https://doi.org/10.1111/1365-2435.12152 (2013).
Google Scholar
Rollinson, N. & Rowe, L. Temperature-dependent oxygen limitation and the rise of Bergmann’s rule in species with aquatic respiration. Evolution 72, 977–988. https://doi.org/10.1111/evo.13458 (2018).
Google Scholar
Harrison, J. F., Kaiser, A. & VandenBrooks, J. M. Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. B 277, 1937–1946. https://doi.org/10.1098/rspb.2010.0001 (2010).
Google Scholar
Frazier, M. R., Woods, H. A. & Harrison, J. F. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster. Physiol. Biochem. Zool. 74, 641–650. https://doi.org/10.1086/322172 (2001).
Google Scholar
Hoefnagel, K. N. & Verberk, W. Is the temperature-size rule mediated by oxygen in aquatic ectotherms?. J. Therm. Biol 54, 56–65. https://doi.org/10.1016/j.jtherbio.2014.12.003 (2015).
Google Scholar
Walczyńska, A., Labecka, A. M., Sobczyk, M., Czarnoleski, M. & Kozłowski, J. The Temperature-Size Rule in Lecane inermis (Rotifera) is adaptive and driven by nuclei size adjustment to temperature. J. Therm. Biol 54, 78–85 (2015).
Google Scholar
Whitman, D. W. & Agrawal, A. A. in Phenotypic plasticity of insects: mechanisms and consequences (eds D.W. Whitman & T.N. Ananthakrishnan) 1–63 (Science Publishers, 2009).
Stauffer, J. R. & van Snik Gray, E. Phenotypic plasticity: Its role in trophic radiation and explosive speciation in cichlids (Teleostei: Cichlidae). Animal Biol. 54, 137–158 (2004).
Google Scholar
Ishikawa, A. et al. Speciation in ninespine stickleback: Reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback. J. Evol. Biol. 26, 1417–1430 (2013).
Google Scholar
Gabaldon, C., Fontaneto, D., Carmona, M. J., Montero-Pau, J. & Serra, M. Ecological differentiation in cryptic rotifer species: What we can learn from the Brachionus plicatilis complex. Hydrobiologia 796, 7–18. https://doi.org/10.1007/s10750-016-2723-9 (2017).
Google Scholar
Mills, S. et al. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796, 39–58. https://doi.org/10.1007/s10750-016-2725-7 (2017).
Google Scholar
Ortells, R., Gomez, A. & Serra, M. Coexistence of cryptic rotifer species: Ecological and genetic characterisation of Brachionus plicatilis. Freshw. Biol. 48, 2194–2202. https://doi.org/10.1046/j.1365-2427.2003.01159.x (2003).
Google Scholar
Serra, M. & Fontaneto, D. in Rotifers. Aquaculture, ecology, gerontology, and ecotoxicology (eds A. Hagiwara & T. Yoshinaga) 15–34 (Springer, 2017).
Gomez, A., Montero-Pau, J., Lunt, D. H., Serra, M. & Campillo, S. Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula. Mol. Ecol. 16, 3228–3240. https://doi.org/10.1111/j.1365-294X.2007.03372.x (2007).
Google Scholar
Montero-Pau, J., Ramos-Rodriguez, E., Serra, M. & Gomez, A. Long-term coexistence of rotifer cryptic species. PLoS ONE https://doi.org/10.1371/journal.pone.0021530 (2011).
Google Scholar
Gomez, A., Carmona, M. J. & Serra, M. Ecological factors affecting gene flow in the Brachionus plicatilis complex (Rotifera). Oecologia 111, 350–356. https://doi.org/10.1007/s004420050245 (1997).
Google Scholar
Serrano, L., Serra, M. & Miracle, M. R. Size variation in Brachionus plicatilis resting eggs. Hydrobiologia 186, 381–386. https://doi.org/10.1007/bf00048936 (1989).
Google Scholar
Walczyńska, A. & Serra, M. Inter- and intraspecific relationships between performance and temperature in a cryptic species complex of the rotifer Brachionus plicatilis. Hydrobiologia 734, 17–26 (2014).
Google Scholar
Serra, M. & Miracle, M. R. Bometric variation in three strains of Brachionus plicatilis as a direct response to abiotic variables. Hydrobiologia 147, 83–89. https://doi.org/10.1007/bf00025729 (1987).
Google Scholar
Gomez, A., Temprano, M. & Serra, M. Ecological genetics of a cyclical parthenogen in temporary habitats. J. Evol. Biol. 8, 601–622. https://doi.org/10.1046/j.1420-9101.1995.8050601.x (1995).
Google Scholar
Walczyńska, A. & Serra, M. Species size affects hatching response to different temperature regimes in a rotifer cryptic species complex. Evol. Ecol. 28, 131–140 (2014).
Google Scholar
Walczynska, A., Franch-Gras, L. & Serra, M. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796, 191–200. https://doi.org/10.1007/s10750-017-3206-3 (2017).
Google Scholar
Weider, L. J., Jeyasingh, P. D. & Frisch, D. Evolutionary aspects of resurrection ecology: Progress, scope, and applications-An overview. Evol. Appl. 11, 3–10. https://doi.org/10.1111/eva.12563 (2018).
Google Scholar
Levis, N. A. & Pfennig, D. W. Evaluating “Plasticity-First” evolution in nature: Key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574. https://doi.org/10.1016/j.tree.2016.03.012 (2016).
Google Scholar
O’Rourke, N. & Hatcher, L. A step-by-step approach to using SAS® for Factor Analysis and Structural Equation Modeling 2nd edn. (SAS Institute Inc., 2013).
Campillo, S., Garcia-Roger, E. M., Jose Carmona, M. & Serra, M. Local adaptation in rotifer populations. Evolut. Ecol. 25, 933–947. https://doi.org/10.1007/s10682-010-9447-5 (2011).
Google Scholar
Gomez, A. & Carvalho, G. R. Sex, parthenogenesis and genetic structure of rotifers: Microsatellite analysis of contemporary and resting egg bank populations. Mol. Ecol. 9, 203–214. https://doi.org/10.1046/j.1365-294x.2000.00849.x (2000).
Google Scholar
Gabaldon, C., Montero-Pau, J., Carmona, M. J. & Serra, M. Life-history variation, environmental fluctuations and competition in ecologically similar species: Modeling the case of rotifers. J. Plankton Res. 37, 953–965. https://doi.org/10.1093/plankt/fbv072 (2015).
Google Scholar
Wetzel, R. G. Limnology. Lake and river ecosystems (Elsevier Academic Press, 2001).
Kuhl, M., Cohen, Y., Dalsgaard, T., Jorgensen, B. B. & Revsbech, N. P. Micreoenvironment and photosynthesis of Zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172. https://doi.org/10.3354/meps117159 (1995).
Google Scholar
Denny, M. W. Air and water. The biology and physics of life’s media (Princeton University Press, 1993).
Google Scholar
Montero-Pau, J., Serra, M. & Gomez, A. Diapausing egg banks, lake size, and genetic diversity in the rotifer Brachionus plicatilis Muller (Rotifera, Monogononta). Hydrobiologia 796, 77–91. https://doi.org/10.1007/s10750-016-2833-4 (2017).
Google Scholar
Tarazona, E., Garcia-Roger, E. M. & Carmona, M. J. Experimental evolutioin of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126, 1162–1172. https://doi.org/10.1111/oik.04186 (2017).
Google Scholar
Franch-Gras, L., Montero-Pau, J. & Serra, M. The effect of environmental uncertainty and diapause investment on the occurrence of specialist and generalist species. Int. Rev. Hydrobiol. 99, 125–132. https://doi.org/10.1002/iroh.201301712 (2014).
Google Scholar
Martinez-Ruiz, C. & Garcia-Roger, E. M. Being first increases the probability of long diapause in rotifer resting eggs. Hydrobiologia 745, 111–121. https://doi.org/10.1007/s10750-014-2098-8 (2015).
Google Scholar
Garcia-Roger, E. M. Analisis demografico de bancos de huevos diapausicos de rotiferos PhD Thesis thesis, University of Valencia, (2006).
Lapesa, S. Efecto de la depredación por invertebrados sobre poblaciones simpátricas de especies crípticas de rotíferos PhD thesis, University of Valencia, (2004).
Miracle, M. R. & Serra, M. Salinity and temperature influence in rotifer life-history characteristics. Hydrobiologia 186, 81–102. https://doi.org/10.1007/bf00048900 (1989).
Google Scholar
Fontaneto, D., Giordani, I., Melone, G. & Serra, M. Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583, 297–307. https://doi.org/10.1007/s10750-007-0573-1 (2007).
Google Scholar
Gabaldon, C., Montero-Pau, J., Serra, M. & Carmona, M. J. Morphological similarity and ecological overlap in two rotifer species. PLoS ONE https://doi.org/10.1371/journal.pone.0057087 (2013).
Google Scholar
Gabaldon, C. & Carmona, M. J. Allocation patterns in modes of reproduction in two facultatively sexual cryptic rotifer species. J. Plankton Res. 37, 429–440. https://doi.org/10.1093/plankt/fbv012 (2015).
Google Scholar
Garcia-Roger, E. M., Carmona, M. J. & Serra, M. Deterioration patterns in diapausing egg banks of Brachionus (Muller, 1786) rotifer species. J. Exp. Mar. Biol. Ecol. 314, 149–161. https://doi.org/10.1016/j.jembe.2004.08.023 (2005).
Google Scholar
Lapesa, S., Snell, T. W., Fields, D. M. & Serra, M. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshw. Biol. 47, 1685–1695. https://doi.org/10.1046/j.1365-2427.2002.00926.x (2002).
Google Scholar
Serra, M., Gomez, A. & Carmona, M. J. Ecological genetics of Brachionus sympatric sibling species. Hydrobiologia 387, 373–384. https://doi.org/10.1023/a:1017083820908 (1998).
Google Scholar
Ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. . 496 (Microcomputer Power, 2012).
Ciros-Perez, J., Gomez, A. & Serra, M. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research 23, 1311–1328 (2001).
Gomez, A., Serra, M., Carvalho, G. R. & Lunt, D. H. Speciation in ancient cryptic species complexes: Evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56, 1431–1444 (2002).
Google Scholar
SAS/STAT User’s Guide (Cary NC, SAS Institute Inc., 2013).
Source: Ecology - nature.com