in

Nutritional value and bioaccumulation of heavy metals in nine commercial fish species from Dachen Fishing Ground, East China Sea

  • FAO Food and Agriculture Organization). Fishery Information Data and Statistics Unit. FISHSTAT + Databases and Statistics (Food and Agriculture Organization of the United Nation, 2016).

    Google Scholar 

  • Ke, P. & Wang, W. X. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 421–422(Apr.1), 3–16 (2012).

    Google Scholar 

  • Jarup, L. Hazards of heavy metal contamination. Brit. Med. Bull. 68(1), 167–182 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Golden, C. et al. Nutrition: Fall in fish catch threatens human health. Nature 534(7607), 317–320 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Baki, A. M. et al. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 159, 153–163 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Saha, N., Mollah, M., Alam, M. F. & Rahman, M. S. Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70, 110–118 (2016).

    CAS 
    Article 

    Google Scholar 

  • Gu, Y. G. et al. Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of south china sea. Mar. Pollut. Bull. 114(2), 1125–1129 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Korkmaz, C., Özcan, A., Ersoysal, Y., Köroğlu, M. A. & Erdem, C. Heavy metal levels in muscle tissues of some fish species caught from north-east mediterranean: Evaluation of their effects on human health. J. Food Compos. Anal. 81, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • Rahman, M. S. et al. Assessment of heavy metals contamination in selected tropical marine fish species in Bangladesh and their impact on human health. Environ. Nanotechnol. Monit. Manage. 11, 25 (2019).

    Google Scholar 

  • Zhou, X. J., Zhao, X., Zhang, S. Y. & Lin, J. Marine ranching construction and management in East China Sea: Programs for sustainable fishery and aquaculture. Water 6, 25 (2019).

    Google Scholar 

  • Lu, C. Thoughts on promoting the construction of Dachen Ecological Island. Decis. Mak. Consult. 03, 80–83 (2017).

    Article 

    Google Scholar 

  • Liu, Y. Y., Ren, M. & Gu, Y. Study on the planning and construction of Taizhou Dachen Marine ecological special reserve. Mar. Dev. Manage. 29(05), 113–115 (2012).

    Google Scholar 

  • Wang, J. Y., Wang, Y. C. & Lou, J. H. Analysis on heavy metal pollution in major seafoods from Zhoushan Fishery, China. Chin. J. Epidemiol. 33(10), 1001–1004 (2012).

    CAS 

    Google Scholar 

  • Peng, F. et al. Occurrence and risk assessment of heavy metals and polycyclic aromatic hydrocarbons in marine organisms from Yuwai Fishing Ground. Asian J. Ecotoxicol. 14(01), 168–179 (2019).

    Google Scholar 

  • Liu, Q., Liao, Y., Xu, X., Shi, X. & Shou, L. Heavy metal concentrations in tissues of marine fish and crab collected from the middle coast of Zhejiang Province, China. Environ. Monit. Assess. 192, 5 (2020).

    Article 
    CAS 

    Google Scholar 

  • AOAC. Association of Official Analytical Chemists. Official Methods of Analysis 16th edn. (Arlington, 2016).

    Google Scholar 

  • Varol, M., Kaya, G. K. & Sünbül, M. R. Evaluation of health risks from exposure to arsenic and heavy metals through consumption of ten fish species. Environ. Sci. Pollut. Res. 26(32), 33311–33320 (2019).

    CAS 
    Article 

    Google Scholar 

  • SOA. GB 17378–2007 (Standardization Administration of the People’s Republic of China (SAC), 2007).

    Google Scholar 

  • Yi, Y., Yang, Z. & Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River Basin. Environ. Pollut. 159(10), 2575–2585 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lie, A., Poa, A., Aaec, D., It, A. & Eob, D. Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin river, Nigeria. Toxicol. Rep. 6, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, Z. et al. Review on the evaluation methods of food safety of edible fish in Meijiang River. Guangdong Chem. Ind. 46(11), 122–123 (2019).

    Google Scholar 

  • Yue, D. D. et al. Relationship between aquatic product consumption and income gap between Chinese urban and rural residents. Fish. Inf. Strat. 33(337), 4–11 (2018).

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume II. Risk Assessment and Fish Consumption Limits. (EPA 823-B-00-008) (United States Environmental Protection Agency, 2000).

    Google Scholar 

  • Wang, L. et al. Heavy metal pollution and health risk assessment of fish in the Huizhou section of the Dongjiang River. J. Ecol. Rural Environ. 33(01), 70–76 (2017).

    CAS 

    Google Scholar 

  • Wang, X., Sato, T., Xing, B. & Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350(1/3), 28–37 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • USEPA. Risk-Based Concentration Table (United States Environmental Protection Agency, 2009).

    Google Scholar 

  • Shang, D. et al. Safety evaluation of arsenic and arsenic compounds in food. Chin. Fish. Qual. Std. 04, 21–32 (2012).

    Google Scholar 

  • Ahmed, A. S. S., Sultana, S., Habib, A., Ullah, H. & Sarker, M. S. I. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS One 14(10), e0219336 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Quanyou, G. et al. Quality differences of large yellow croaker (Pseudosciaena crocea) cultured in deep-water sea cages of two China Regions. Spine 9(9), 1–8 (2018).

    ADS 

    Google Scholar 

  • Zhu, A. Y., Xie, J. Y., Jiang, L. H. & Lou, B. The nutritional composition and evaluation in muscle of S. marmoratus. Acta Nutr. Sin. 33(06), 621–623 (2011).

    CAS 

    Google Scholar 

  • Xu, X. H. et al. Analysis and quality evaluation of the muscle nutrients of Wild Pirate Goby in Lianyungang Sea. Jiangsu Agric. Sci. 1, 261–265 (2012).

    Google Scholar 

  • Jiang, X. H. & Yang, P. M. Nutritional composition analysis in muscle of Tapertail Anchovy Coilia nasus from Dayyang River before and after reproduction. Fish. Sci. 40(06), 835–842 (2021).

    Google Scholar 

  • Zeng, S. K., Zhang, C. Y. & Jiang, Z. H. Study on the comparison of the food nutrient contents between the muscle and head of Muraenesox cinereus. Mar. Sci. 05, 13–15 (2002).

    Google Scholar 

  • Guo, H., Xu, M., Shen, Y. C., Ye, N. & Cao, Y. T. Analysis and evaluation of nutritional composition in the muscle of Johnius belangerii. Feed Ind. 37(18), 24–26 (2016).

    Google Scholar 

  • Wang, Y. H., Lv, Z. H., Gao, T. X. & Zheng, G. X. Research on nutritional components of Lateolabrax sp and L. japonicus. Progress Fish. Sci. 02, 35–39 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Nauen, C. E. Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular (FAO) no 764. (1983).

  • JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants. Thirty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series, No 776 (World Health Organization, 1989).

    Google Scholar 

  • FAO. The State of the World Fisheries and Aquaculture (FAO Fisheries and Aquaculture Dept, 2014).

    Google Scholar 

  • JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants. Seventythird Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series, No 960 (World Health Organization, 2011).

    Google Scholar 

  • JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants. Twenty-sixth Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, No 683 (World Health Organization, 1982).

    Google Scholar 

  • EFSA (European Food Safety Authority). Scientific opinion on lead in food. EFSA J. 8(4), 1570 (2010).

    Google Scholar 

  • EFSA (European Food Safety Authority). Scientific opinion on dietary reference values for chromium. EFSA J. 12(10), 3845 (2014).

    Article 
    CAS 

    Google Scholar 

  • Younis, E. M. & Abdel-Warithl-Shayia, A. A. A. S. Chemical composition and mineral contents of six commercial fish species from the Arabian Gulf coast of Saudi Arabia. J. Anim. Vet. Adv. 10(23), 3063–3069 (2011).

    Google Scholar 

  • Jakhar, K., Jakhar, J. K., Pal, A. K., Reddy, A. D. & Vardia, H. K. Fatty acids composition of some selected Indian fishes. Afr. J. Basic Appl. Sci. 4(5), 155–160 (2012).

    CAS 

    Google Scholar 

  • Patrizia, C., Francesca, T. & Rosaria, S. Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems. Environ. Monit. Assess. 20, 1–4 (2010).

    Google Scholar 

  • Younis, E. M., Abdel-Warith, A., Al-Asgah, N. A., Elthebite, S. A. & Rahman, M. M. Nutritional value and bioaccumulation of heavy metals in muscle tissues of five commercially important marine fish species from the red sea. Saudi J. Biol. Sci. 20, 20 (2020).

    Google Scholar 

  • Nath, A. K. et al. Fatty acid compositions of four edible fishes of Hooghly Estuary, West Bengal, India. Int. J. Curr. Microbiol. Appl. Sci 3, 208–218 (2014).

    Google Scholar 

  • Saeed, S. Impact of environmental parameters on fish condition and quality in Lake Edku, Egypt. Egypt. J. Aquat. Biol. Fish. 17(1), 101–112 (2013).

    Google Scholar 

  • Xiao, M. S., Wang, S., Bao, F. Y. & Feng, C. Enrichment of heavy metals in economic aquatic animals in huaihe river segment of Bengbu sampling points. Res. Environ. Sci. 24(8), 942–948 (2011).

    CAS 

    Google Scholar 

  • Sun, W. P., Liu, X. Y., Pan, J. M. & Weng, H. X. Levels of heavy metals in commercial fish species from the near-shore of Zhejiang Province. J. Zhejiang Univ. (Sci. Ed.) 26, 1–21 (2012).

    Google Scholar 

  • Djikanovic, V., Skoric, S., Spasic, S., Naunovic, Z. & Lenhardt, M. Ecological risk assessment for different macrophytes and fish species in reservoirs using biota-sediment accumulation factors as a useful tool. Environ. Pollut. 241(4), 1167 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wuana, R., Ogbodo, C., Itodo, U. A. P. D. & Eneji, I. Ecological and human health risk assessment of toxic metals in water, sediment and fish from Lower Usuma Dam Abuja, Nigeria. J. Geosci. Environm. Protect. 08, 82–106 (2020).

    Article 

    Google Scholar 

  • UNEP Chemicals. Inter-Organization Programm for the sound Management of Chemicals, Global Mercury Assessment (UNEP Chemicals, 2002).

    Google Scholar 

  • Hammerschmidt, C. R. & Fitzgerald, W. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 38(5), 1487–1495 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, Y. F. et al. Heavy metal characterization of fish species in a typical sea area of Guangdong-Hong Kong-Macau Greater Bay Area. Trans. Oceanol. Limnol. 43(03), 107–116 (2021).

    Google Scholar 

  • Wang, H., Fang, F. & Xie, H. Research situation and outlook on heavy metal pollution in water environment of China. Guangdong Trace Elem. Sci. 17, 14–18 (2010).

    CAS 

    Google Scholar 

  • Monroy, M., Maceda-Veiga, A. & Sostoa, A. D. Metal concentration in water, sediment and four fish species from lake Titicaca reveals a large-scale environmental concern. Sci. Total Environ. 487(15), JUL.15-244 (2014).

    Google Scholar 

  • Canli, M. & Atli, G. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six mediterranean fish species. Environ. Pollut. 121(1), 129–136 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Makedonski, L., Peycheva, K. & Stancheva, M. Determination of heavy metals in selected black sea fish species. Food Control 72, 313–318 (2017).

    CAS 
    Article 

    Google Scholar 

  • Shinn, C., Dauba, F., Grenouillet, G., Guenard, G. & Lek, S. Temporal variation of heavy metal contamination in fish of the river lot in Southern France. Ecotoxicol. Environ. Saf. 72(7), 1957–1965 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nabavi, S. F., Nabavi, S. M., Latifi, A. M., Eslami, S. & Ebrahimzadeh, M. A. Determination of trace elements level of pikeperch collected from the Caspian sea. Bull. Environ. Contam. Toxicol. 88(3), 401–405 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, H. X. et al. Mechanisms of cr(VI) toxicity to fish in aquatic environment: A review. Chin. J. Appl. Ecol. 10, 3226–3234 (2015).

    Google Scholar 

  • Ding, X., Si, Y. E. & Jing, L. The heavy metals distribution pattern and geochemical provinces of the surficial sediments offshore Zhejiang. Mar. Geol. Front. 26(12), 1–8 (2010).

    ADS 

    Google Scholar 

  • Dai, W. Research progress on the toxicity of lead in aquatic animals. J. Anhui Agric. Sci. 38(011), 5819–5820 (2010).

    CAS 

    Google Scholar 

  • Lee, K. G. et al. Characterization of tyrosine-rich antheraea pernyi silk fibroin hydrolysate. Int. J. Biol. Macromol. 48(1), 223–226 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, T. F. Heavy metal content and food risk of aquatic organisms in Jiaojiang district of Taizhou city. J. Food Saf. Qual. 10(16), 5561–5567 (2019).

    Google Scholar 

  • Wu, Z. Y., Yang, S. Y., Su, N., Guo, Y. L. & Bi, L. Distribution and pollution assessment of heavy metals in the sediments of Jiaojiang River. Mar. Geol. Q. Geol. 38(01), 96–107 (2018).

    CAS 

    Google Scholar 

  • Bravo, A. G. et al. Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania). Environ. Sci. Pollut. R 17(8), 1422–1432 (2010).

    CAS 
    Article 

    Google Scholar 

  • Vu, C. T., Lin, C., Yeh, G. & Villanueva, M. C. Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: Assessment and possible human health implications. Environ. Sci. Pollut. Res. 24, 19422–19434 (2017).

    CAS 
    Article 

    Google Scholar 

  • Li, P. H. et al. Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places. Aerosol. Air Qual. Res. 13, 255–265 (2013).

    Article 
    CAS 

    Google Scholar 

  • Saha, N. & Zaman, M. R. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environ. Monit. Assess. 185(5), 3867–3878 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miri, M., Akbari, E., Amrane, A., Jafari, S. J. & Taghavi, M. Health risk assessment of heavy metal intake due to fish consumption in the Sistan Region, Iran. Environ. Monit. Assess. 189(11), 583 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kalantzi, I. et al. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 194(1), 659–670 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhong, W. et al. Health risk assessment of heavy metals in freshwater fish in the central and Eastern North China. Ecotoxicol. Environ. Saf. 157(AUG), 343–349 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Machine learning, harnessed to extreme computing, aids fusion energy development

    From seawater to drinking water, with the push of a button