Dennell, R. Dispersal and colonisation, long and short chronologies: how continuous is the Early Pleistocene record for hominids outside East Africa?. J. Hum. Evol. 45, 421–440. https://doi.org/10.1016/j.jhevol.2003.09.006 (2003).
Google Scholar
Moncel, M.-H. et al. Early Levallois core technology between Marine Isotope Stage 12 and 9 in Western Europe. J. Hum. Evol. 139, 102735. https://doi.org/10.1016/j.jhevol.2019.102735 (2020).
Google Scholar
Moncel, M.-H. et al. Linking environmental changes with human occupations between 900 and 400 ka in Western Europe. Quatern. Int. 480, 78–94. https://doi.org/10.1016/j.quaint.2016.09.065 (2018).
Google Scholar
Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507. https://doi.org/10.1038/nature17405 (2016).
Google Scholar
Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406. https://doi.org/10.1038/nature12788 (2014).
Google Scholar
Rightmire, G. P. Homo in the Middle Pleistocene: Hypodigms, variation, and species recognition. Evolut. Anthropol. Issues News Rev. 17, 8–21. https://doi.org/10.1002/evan.20160 (2008).
Google Scholar
Stringer, C. B. The Status of Homo heidelbergensis (Schoetensack 1908). Evol. Anthropol. 21, 101–107 (2012).
Google Scholar
Dennell, R. W., Martinón-Torres, M. & Bermúdez de Castro, J. M. Hominin variability, climatic instability and population demography in Middle Pleistocene Europe. Quat. Sci. Rev. 30, 1511–1524 (2011).
Google Scholar
Galway-Witham, J., Cole, J. & Stringer, C. Aspects of human physical and behavioural evolution during the last 1 million years. J. Quat. Sci. 34, 355–378. https://doi.org/10.1002/jqs.3137 (2019).
Google Scholar
Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene Demography and the Appearance of Modern Human Behavior. Science 324, 1298–1301. https://doi.org/10.1126/science.1170165 (2009).
Google Scholar
Vaesen, K., Collard, M., Cosgrove, R. & Roebroeks, W. Population size does not explain past changes in cultural complexity. Proc. Natl. Acad. Sci. 113, E2241–E2247. https://doi.org/10.1073/pnas.1520288113 (2016).
Google Scholar
Henrich, J. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case. Am. Antiq. 69, 197–214. https://doi.org/10.2307/4128416 (2004).
Google Scholar
Cavalli-Sforza, L., Barrai, I. & Edwards, A. W. F. Analysis of human evolution under random genetic drift. Symp. Quant. Biol. 29, 9–20. https://doi.org/10.1101/SQB.1964.029.01.006 (1964).
Google Scholar
Boaz, N. T. Early hominid population densities: new estimates. Science 206, 592–595. https://doi.org/10.1126/science.206.4418.592 (1979).
Google Scholar
Ashton, N. & Davis, R. Cultural mosaics, social structure, and identity: the Acheulean threshold in Europe. J. Hum. Evol. 156, 103011. https://doi.org/10.1016/j.jhevol.2021.103011 (2021).
Google Scholar
Hayden, B. Neandertal social structure?. Oxf. J. Archaeol. 31, 1–26. https://doi.org/10.1111/j.1468-0092.2011.00376.x (2012).
Google Scholar
Bocquet-Appel, J.-P., Demars, P.-Y., Noiret, L. & Dobrowsky, D. Estimates of Upper Paleolithic meta-population size in Europe from archaeological data. J. Archaeol. Sci. 32, 1656–1668 (2005).
Google Scholar
Maier, A. et al. Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quatern. Int. 425, 49–61. https://doi.org/10.1016/j.quaint.2016.04.009 (2016).
Google Scholar
Gautney, J. R. & Holliday, T. W. New estimations of habitable land area and human population size at the Last Glacial Maximum. J. Archaeol. Sci. 58, 103–112. https://doi.org/10.1016/j.jas.2015.03.028 (2015).
Google Scholar
Rodríguez-Gómez, G., Rodríguez, J., Martín-González, J. A., Goikoetxea, I. & Mateos, A. Modeling trophic resource availability for the first human settlers of Europe: the case of Atapuerca TD6. J. Hum. Evol. 64, 645–657. https://doi.org/10.1016/j.jhevol.2013.02.007 (2013).
Google Scholar
Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl. Acad. Sci. 112, 8232–8237. https://doi.org/10.1073/pnas.1503784112 (2015).
Google Scholar
Sánchez-Quinto, F. & Lalueza-Fox, C. Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction. Philosophical Trans. Royal Soc. B Biol. Sci. 370, 20130374. https://doi.org/10.1098/rstb.2013.0374 (2015).
Google Scholar
Rodríguez, J., Willmes, C. & Mateos, A. Shivering in the Pleistocene. Human adaptations to cold exposure in Western Europe from MIS 14 to MIS 11. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2021.102966 (2021).
Google Scholar
Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G. & Toucanne, S. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quatern. Sci. Rev. 111, 94–106. https://doi.org/10.1016/j.quascirev.2015.01.012 (2015).
Google Scholar
MacDonald, K., Martinón-Torres, M., Dennell, R. W. & Bermúdez de Castro, J. M. Discontinuity in the record for hominin occupation in south-western Europe: implications for occupation of the middle latitudes of Europe. Quatern. Int 271, 84–97. https://doi.org/10.1016/j.quaint.2011.10.009 (2012).
Google Scholar
Gamisch, A. Oscillayers: A dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. Glob. Ecol. Biogeogr. 28, 1552–1156. https://doi.org/10.1111/geb.12979 (2019).
Google Scholar
Gamisch, A. Oscillayers: A dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. https://doi.org/10.5061/dryad.27f8s90 (Dryad, 2019).
Banks, W. E. et al. An ecological niche shift for Neanderthal populations in Western Europe 70,000 years ago. Sci. Rep. 11, 5346. https://doi.org/10.1038/s41598-021-84805-6 (2021).
Google Scholar
Banks, W. E., d’Errico, F. & Zilhão, J. Human–climate interaction during the Early Upper Paleolithic: testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian. J. Hum. Evol. 64, 39–55. https://doi.org/10.1016/j.jhevol.2012.10.001 (2013).
Google Scholar
Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. 106, 19644–19650. https://doi.org/10.1073/pnas.0901637106 (2009).
Google Scholar
Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl. Acad. Sci. 115, 1232–1237. https://doi.org/10.1073/pnas.1715638115 (2018).
Google Scholar
Binford, L. R. Constructing frames of reference: an analytical method for archaeological theory building using ethnographic and environmental data set (University of California Press, Berkeley, 2001).
Hamilton, M. J., Milne, B. T., Walker, R. S. & Brown, J. H. Nonlinear scaling of space use in human hunter–gatherers. Proc. Natl. Acad. Sci. 104, 4765. https://doi.org/10.1073/pnas.0611197104 (2007).
Google Scholar
Coe, M. J., Cumming, D. H. & Phillipson, J. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22, 341–354 (1976).
Google Scholar
Hatton, I. A. et al. The predator-prey power law: biomass scaling across terrestrial and aquatic biomes. Science https://doi.org/10.1126/science.aac6284 (2015).
Google Scholar
Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2275 (2002).
Google Scholar
Braun, D. R. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc Natl Acad Sci 107, 10002–10007. https://doi.org/10.1073/pnas.1002181107 (2010).
Google Scholar
Marlowe, F. W. Hunter-gatherers and human evolution. Evolut. Anthropol. Issues News Rev. 14, 54–67. https://doi.org/10.1002/evan.20046 (2005).
Google Scholar
Steele, T. A unique hominin menu dated to 1.95 million years ago. Proc. Natl Acad Sci United States of Am 107, 10771–10772. https://doi.org/10.1073/pnas.1005992107 (2010).
Google Scholar
Conard, N. J. et al. Excavations at Schöningen and paradigm shifts in human evolution. J. Hum. Evol. 89, 1–17. https://doi.org/10.1016/j.jhevol.2015.10.003 (2015).
Google Scholar
Kelly, R. L. The lifeways of hunter-gatherers: the foraging spectrum 2nd edn. (Cambridge Univ Press, Cambridge, 2013).
Google Scholar
Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261 (2014).
Google Scholar
Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).
Google Scholar
Morales, N. S., Fernández, I. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093. https://doi.org/10.7717/peerj.3093 (2017).
Google Scholar
Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Model. 222, 2796–2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011 (2011).
Google Scholar
Lisiecki, L. & Raymo, M. A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography https://doi.org/10.1029/2004PA001071 (2005).
Google Scholar
Carrión, J. S., Rose, J. & Stringer, C. B. Early human evolution in the western Palaearctic: ecological scenarios. Quat. Sci. Rev. 30, 1281–1295 (2011).
Google Scholar
Davis, R. & Ashton, N. Landscapes, environments and societies: the development of culture in Lower Palaeolithic Europe. J. Anthropol. Archaeol. 56, 101107. https://doi.org/10.1016/j.jaa.2019.101107 (2019).
Google Scholar
Davis, R., Ashton, N., Hatch, M., Hoare, P. G. & Lewis, S. G. Palaeolithic archaeology of the Bytham River: human occupation of Britain during the early Middle Pleistocene and its European context. J. Quat. Sci. 36, 526–546. https://doi.org/10.1002/jqs.3305 (2021).
Google Scholar
Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).
Google Scholar
Kahlke, R.-D. et al. Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene inferred from large mammal communities, and implications for hominin dispersal in Europe. Quat. Sci. Rev. 11–12, 1368–1395 (2011).
Google Scholar
Hosfield, R. The earliest Europeans a year in the life (Oxbow Books, Oxford, 2020).
Google Scholar
Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493. https://doi.org/10.1016/0047-2484(92)90081-J (1992).
Google Scholar
Bird, D. W., Bird, R. B., Codding, B. F. & Zeanah, D. W. Variability in the organization and size of hunter-gatherer groups: foragers do not live in small-scale societies. J. Hum. Evol. 131, 96–108. https://doi.org/10.1016/j.jhevol.2019.03.005 (2019).
Google Scholar
Arsuaga, J. L. et al. Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science 344, 1358–1363. https://doi.org/10.1126/science.1253958 (2014).
Google Scholar
Traill, L. W., Bradshaw, R. H. W. & Brook, B. W. Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol. Cons. 139, 159–166 (2007).
Google Scholar
Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20, 1–9. https://doi.org/10.1111/ddi.12144 (2014).
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).
Google Scholar
Lieth, H. F. H. Primary production: terrestrial ecosystems. Hum. Ecol. 1, 303–332 (1973).
Google Scholar
Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).
Google Scholar
Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).
Google Scholar
Braunisch, V. et al. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36, 971–983. https://doi.org/10.1111/j.1600-0587.2013.00138.x (2013).
Google Scholar
De Marco, P. J. & Nóbrega, C. C. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS ONE 13, e0202403. https://doi.org/10.1371/journal.pone.0202403 (2018).
Google Scholar
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).
Google Scholar
Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256. https://doi.org/10.1111/geb.12684 (2018).
Google Scholar
Harell Jr., F. E. & with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous (2021).
Barbosa, A. M. fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol. Evol. 6, 853–858. https://doi.org/10.1111/2041-210X.12372 (2015).
Google Scholar
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).
Google Scholar
James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning with Appllication in R. 1 edn, (Springer, 2013).
Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. https://doi.org/10.7289/V5C8276M (2009).
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).
Google Scholar
Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. & Kadmon, R. A comparative evaluation of presence-only methods for modelling species distribution. Divers. Distrib. 13, 397–405. https://doi.org/10.1111/j.1472-4642.2007.00346.x (2007).
Google Scholar
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).
Google Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).
Google Scholar
755026R: A Language and Environment for STATISTICAL Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).
Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).
Google Scholar
Kelt, D. & Vuren, D. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645. https://doi.org/10.1086/320621 (2001).
Google Scholar
Rodríguez, J., Sommer, C., Willmes, C. & Mateos, A. Data and code for “Sustainable Human Population Density in Western Europe between 560.000 and 360.000 years ago” https://doi.org/10.5281/zenodo.6045917 (2022).
Source: Ecology - nature.com