in

Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi

  • Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99 (2013).

    CAS 
    Article 

    Google Scholar 

  • Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 25, 12–24 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Krull, E. S., Baldock, J. A. & Skjemstad, J. O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 30, 207–222 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Langley, J. A. & Hungate, B. A. Mycorrhizal controls on belowground litter quality. Ecology 84, 2302–2312 (2003).

    Article 

    Google Scholar 

  • Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).

    Article 

    Google Scholar 

  • Cou ̂teaux, M. M., Bottner, P. & Berg, B. Litter decomposition, climate and litter quality. Trends Ecol. Evol. 10, 63–66 (1995).

    Article 

    Google Scholar 

  • Prescott, C. E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149 (2010).

    CAS 
    Article 

    Google Scholar 

  • Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3, 395–398 (2013).

    CAS 
    Article 

    Google Scholar 

  • Fernandez, C. W., Heckman, K., Kolka, R. & Kennedy, P. G. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol. Lett. 22, 498–505 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).

    CAS 
    Article 

    Google Scholar 

  • Aponte, C., García, L. V., & Marañón, T. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems 15, 1204–1218 (2012).

    CAS 
    Article 

    Google Scholar 

  • Hättenschwiler, S. & Jørgensen, H. B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 98, 754–763 (2010).

    Article 
    CAS 

    Google Scholar 

  • van der Heijden, M. G., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lin, G., McCormack, M. L., Ma, C. & Guo, D. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. N. Phytol. 213, 1440–1451 (2017).

    CAS 
    Article 

    Google Scholar 

  • Högberg, M. N. & Högberg, P. Extramatrical ectomycorrhizal mycelium contributes one‐third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. N. Phytol. 154, 791–795 (2002).

    Article 

    Google Scholar 

  • Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).

    Article 

    Google Scholar 

  • Bååth, E., Nilsson, L. O., Göransson, H. & Wallander, H. Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil? Soil Biol. Biochem. 36, 2105–2109 (2004).

    Article 
    CAS 

    Google Scholar 

  • Kaiser, C. et al. Exploring the transfer of recent plant photosynthates to soil microbes: Mycorrhizal pathway vs direct root exudation. N. Phytol. 205, 1537–1551 (2015).

    CAS 
    Article 

    Google Scholar 

  • Konvalinková, T., Püschel, D., Řezáčová, V., Gryndlerová, H. & Jansa, J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ouimette, A. P. et al. Accounting for carbon flux to mycorrhizal fungi may resolve discrepancies in forest carbon budgets. Ecosystems 23, 715–729 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wallander, H., Nilsson, L. O., Hagerberg, D. & Bååth, E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. N. Phytol. 151, 753–760 (2001).

    CAS 
    Article 

    Google Scholar 

  • Allen, M. F. & Kitajima, K. Net primary production of ectomycorrhizas in a California forest. Fungal Ecol. 10, 81–90 (2014).

    Article 

    Google Scholar 

  • Godbold, D. L. et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281, 15–24 (2006).

    CAS 
    Article 

    Google Scholar 

  • Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).

    Article 

    Google Scholar 

  • Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).

    Article 

    Google Scholar 

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    CAS 
    Article 

    Google Scholar 

  • Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harley, J. L. Fungi in ecosystems. J. Ecol. 59, 653 (1971).

    Article 

    Google Scholar 

  • Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016).

    CAS 
    Article 

    Google Scholar 

  • Fernandez, C. W. & Koide, R. T. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol. Biochem. 77, 150–157 (2014).

    CAS 
    Article 

    Google Scholar 

  • Trofymow, J. A. The Canadian Institute Decomposition Experiment (CIDET): project and site establishment report / J.A. Trofymow and the CIDET Working Group. (1998).

  • Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E. & Parton, W. J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Chang. Biol. 6, 751–765 (2000).

    Article 

    Google Scholar 

  • Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem 34, 139–162 (2002).

    Article 

    Google Scholar 

  • Zeglin, L. H. & Myrold, D. D. Fate of decomposed fungal cell wall material in organic horizons of old-growth douglas-fir forest soils. Soil Sci. Soc. Am. J. 77, 489–500 (2013).

    CAS 
    Article 

    Google Scholar 

  • Kleber, M. et al. Mineral-organic associations: formation, properties, and relevance in soil environments. in. Adv. Agron. 130, 1–140 (2015).

    Article 

    Google Scholar 

  • Fortin, J. A. et al. Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. 80, 1–20 (2002).

    CAS 
    Article 

    Google Scholar 

  • Declerck, S., Séguin, S. & Dalpé, Y. The monoxenic culture of Arbuscular Mycorrhizal fungi as a tool for germplasm collections. in In Vitro Culture of Mycorrhizas 17–30 (Springer-Verlag, 2005).

  • Lalaymia, I. & Declerck, S. The Mycorrhizal Donor Plant (MDP) in vitro culture system for the efficient colonization of whole plants. 2146, (Springer US, 2020).

  • Crous, P. W., Verkley, G. J. M., Groenewald, J. Z. & Houbraken, J. Westerdijk Laboratory Manual Series 1: Fungal Biodiversity. (2019).

  • Tuomi, M. et al. Leaf litter decomposition-Estimates of global variability based on Yasso07 model. Ecol. Modell. 220, 3362–3371 (2009).

    CAS 
    Article 

    Google Scholar 

  • Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. N. Phytol. 205, 1525–1536 (2015).

    CAS 
    Article 

    Google Scholar 

  • Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300, 1138–1140 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Adamczyk, B., Sietiö, O., Biasi, C. & Heinonsalo, J. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. N. Phytol. 223, 16–21 (2019).

    Article 

    Google Scholar 

  • Davison, J. et al. Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. N. Phytol. 226, 1117–1128 (2020).

    Article 

    Google Scholar 

  • Liski, J., Palosuo, T., Peltoniemi, M. & Sievänen, R. Carbon and decomposition model Yasso for forest soils. Ecol. Modell. 189, 168–182 (2005).

    CAS 
    Article 

    Google Scholar 

  • Guendehou, G. H. S. et al. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Trop. Ecol. 55, 207–220 (2014).

    Google Scholar 

  • Paterson, E. et al. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biol. Biochem. 40, 1103–1113 (2008).

    CAS 
    Article 

    Google Scholar 

  • Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Xia, J. et al. Global patterns in Net Primary Production allocation regulated by environmental conditions and forest stand age: a model‐data comparison. J. Geophys. Res. Biogeosciences 124, 2039–2059 (2019).

    Article 

    Google Scholar 

  • Malhi, Y., Doughty, C. & Galbraith, D. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 366, 3225–3245 (2011).

    CAS 
    Article 

    Google Scholar 

  • Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Rinaldi, A. C., Comandini, O. & Kuyper, T. W. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33, 1–45 (2008).

    Google Scholar 

  • Krüger, M., Krüger, C., Walker, C., Stockinger, H. & Schüßler, A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. N. Phytol. 193, 970–984 (2012).

    Article 

    Google Scholar 

  • Lee, E.-H., Eo, J.-K., Ka, K.-H. & Eom, A.-H. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41, 121–125 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schüβler, A., Schwarzott, D. & Walker, C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105, 1413–1421 (2001).

    Article 

    Google Scholar 

  • Declerck, S., Strullu, D. G. & Plenchette, C. Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90, 579 (1998).

    Article 

    Google Scholar 

  • Voets, L. et al. Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19, 347–356 (2009).

    PubMed 
    Article 

    Google Scholar 

  • von Lützow, M. et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207 (2007).

    Article 
    CAS 

    Google Scholar 

  • Davidson, E. A., Galloway, L. F. & Strand, M. K. Assessing available carbon: Comparison of techniques across selected forest soils. Commun. Soil Sci. Plant Anal. 18, 45–64 (1987).

    CAS 
    Article 

    Google Scholar 

  • Trumbore, S. E., Vogel, J. S. & Southon, J. R. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon 31, 644–654 (1989).

    Article 

    Google Scholar 

  • Henriksen, T. & Breland, T. Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil. Soil Biol. Biochem 31, 1135–1149 (1999).

    CAS 
    Article 

    Google Scholar 

  • Schnitzer, M. & Schuppli, P. Method for the sequential extraction of organic matter from soils and soil fractions. Soil Sci. Soc. Am. J. 53, 1418–1424 (1989).

    CAS 
    Article 

    Google Scholar 

  • Ryan, M. G., Melillo, J. M. & Ricca, A. A comparison of methods for determining proximate carbon fractions of forest litter. Can. J . Res. 20, 166–171 (1990).

    Article 

    Google Scholar 

  • Wieder, R. K. & Starr, S. T. Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Commun. Soil Sci. Plant Anal. 29, 847–857 (1998).

    CAS 
    Article 

    Google Scholar 

  • Xu, G. et al. Differential responses of soil hydrolytic and oxidative enzyme activities to the natural forest conversion. Sci. Total Environ. 716, 136414 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Viskari, T. et al. Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation. Geosci. Model Dev. 13, 5959–5971 (2020). https://doi.org/10.5194/gmd-13-5959-2020.

    CAS 
    Article 

    Google Scholar 

  • Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, https://doi.org/10.1002/9781118445112.stat07841 (2014).

  • Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Tomczak, M. & Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1, 19–25 (2014).

    Google Scholar 

  • Kattge, J. et al. TRY – a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).

    PubMed Central 
    Article 

    Google Scholar 

  • Engemann, K. et al. A plant growth form dataset for the New World. Ecology 97, 3243 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Machine learning, harnessed to extreme computing, aids fusion energy development

    From seawater to drinking water, with the push of a button