in

Evolution of coastal forests based on a full set of mangrove genomes

  • He, Z. et al. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. Natl Sci. Rev. 6, 275–288 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhou, R. et al. Population genetics of speciation in nonmodel organisms: I. Ancestral polymorphism in mangroves. Mol. Biol. Evol. 24, 2746–2754 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Xu, S. et al. Genome-wide convergence during evolution of mangroves from woody plants. Mol. Biol. Evol. 34, 1008–1015 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • He, Z. et al. Convergent adaptation of the genomes of woody plants at the land–sea interface. Natl Sci. Rev. 7, 978–993 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyu, H., He, Z., Wu, C.-I. & Shi, S. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytol. 217, 428–438 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl Sci. Rev. 4, 721–734 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Feng, X. et al. Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba. BMC Plant Biol. 20, 178 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, X. et al. Genomic insights into molecular adaptation to intertidal environments in the mangrove Aegiceras corniculatum. New Phytol. 231, 2346–2358 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7, 12473 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 7, 523–528 (2017).

    CAS 
    Article 

    Google Scholar 

  • Barbier, E. B. et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319, 321–323 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar 

  • Hensel, M. J. S. & Silliman, B. R. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc. Natl Acad. Sci. USA 110, 20621–20626 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomlinson, P. B. The Botany of Mangroves 2nd edn (Cambridge Univ. Press, 2016).

  • Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Change 8, 534–538 (2018).

    CAS 
    Article 

    Google Scholar 

  • Alongi, D. M. Carbon sequestration in mangrove forests. Carbon Manag. 3, 313–322 (2012).

    CAS 
    Article 

    Google Scholar 

  • Grant, K. M. et al. Sea-level variability over five glacial cycles. Nat. Commun. 5, 5076 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Guo, Z. et al. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses. Glob. Change Biol. 24, 1741–1748 (2018).

    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sollars, E. S. A. et al. Genome sequence and genetic diversity of European ash trees. Nature 541, 212–216 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Duke, N. C. in Mangrove Ecosystems: A Global Biogeographic Perspective (eds Rivera-Monroy, V. H. et al.) 17–53 (Springer, 2017).

  • Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob. Ecol. Biogeogr. 8, 95–115 (1999).

    Google Scholar 

  • Gee, C. T. The mangrove palm Nypa in the geologic past of the new world. Wetl. Ecol. Manag. 9, 181–203 (2001).

    Article 

    Google Scholar 

  • Germeraad, J. H., Hopping, C. A. & Muller, J. Palynology of tertiary sediments from tropical areas. Rev. Palaeobot. Palynol. 6, 189–348 (1968).

    Article 

    Google Scholar 

  • Graham, A. Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann. Missouri Bot. Gard. 93, 325–334 (2006).

    Article 

    Google Scholar 

  • Mazer, S. J. & Tiffney, B. H. Fruits of Wetherellia and Palaeowetherellia (?Euphorbiaceae) from Eocene sediments in Virginia and Maryland. Brittonia 34, 300–333 (1982).

  • Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142 (1981).

    Article 

    Google Scholar 

  • Srivastava, J. & Prasad, V. Evolution and paleobiogeography of mangroves. Mar. Ecol. 40, e12571 (2019).

  • Hu, M.-J. et al. Chromosome-scale assembly of the Kandelia obovata genome. Hortic. Res. 7, 75 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

    Article 

    Google Scholar 

  • Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Handley, L., Crouch, E. M. & Pancost, R. D. A New Zealand record of sea level rise and environmental change during the Paleocene–Eocene Thermal Maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 305, 185–200 (2011).

    Article 

    Google Scholar 

  • Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lu, J. & Wu, C.-I. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proc. Natl Acad. Sci. USA 102, 4063–4067 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, M. et al. Perspective: spontaneous deleterious mutation. Evolution 53, 645–663 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 23, 263–286 (1992).

    Article 

    Google Scholar 

  • Liu, X. & Fu, Y. X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. & Fu, Y.-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krauss, K. W. et al. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Frederiksen, N. O. Review of Early Tertiary Sporomorph Paleoecology (American Association of Stratigraphic Palynologists Foundation, 1985).

  • Smith, D. E., Harrison, S., Firth, C. R. & Jordan, J. T. The early Holocene sea level rise. Quat. Sci. Rev. 30, 1846–1860 (2011).

    Article 

    Google Scholar 

  • Bouillon, S. et al. Mangrove production and carbon sinks: a revision of global budget estimates. Glob. Biogeochem. Cycles 22, GB2013 (2008).

    Article 
    CAS 

    Google Scholar 

  • Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).

    CAS 
    Article 

    Google Scholar 

  • Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 8, 240–244 (2018).

    CAS 
    Article 

    Google Scholar 

  • Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240 (2014).

    Article 

    Google Scholar 

  • Ouyang, X. & Lee, S. Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. 11, 317 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Richards, D. R., Thompson, B. S. & Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 11, 4260 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121, 2600–2609 (2016).

    Article 

    Google Scholar 

  • Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).

    Article 

    Google Scholar 

  • Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  • Yang, G., Zhou, R., Tang, T. & Shi, S. Simple and efficient isolation of high-quality total RNA from Hibiscus tiliaceus, a mangrove associate and its relatives. Prep. Biochem. Biotechnol. 38, 257–264 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wang, O. et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res. 29, 798–808 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Preprint at https://arxiv.org/abs/1308.2012v2 (2013).

  • Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, C.-L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 4, 30 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarailo‐Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1–4.10.14 (2009).

    Article 

    Google Scholar 

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Birney, E. Genewise and genomewise. Genome Res. 14, 988–995 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kent, W. J. BLAT—The BLAST-Like Alignment Tool. Genome Res. 12, 656–664 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Reis, M. Dos & Yang, Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. GGTREE: an package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article 

    Google Scholar 

  • Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Liang, Y. et al. Chromosome level genome assembly of Andrographis paniculata. Front. Genet. 11, 701 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Huang, X. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Narasimhan, V. et al. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32, 1749–1751 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hudson, R. R. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Machine learning, harnessed to extreme computing, aids fusion energy development

    From seawater to drinking water, with the push of a button