in

Assessment of acute toxicity and developmental transformation impacts of polyethylene microbead exposure on larval daggerblade grass shrimp (Palaemon pugio)

  • Sharma, S. & Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Pollut. Res. 24(27), 21530–21547 (2017).

    Article 

    Google Scholar 

  • Gray, A. D., Wertz, H., Leads, R. R. & Weinstein, J. E. Microplastic in two South Carolina Estuaries: Occurrence, distribution, and composition. Mar. Pollut. Bull. 128, 223–233 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weinstein, J. E., Dekle, J. L., Leads, R. R. & Hunter, R. A. Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters. Mar. Pollut. Bull. 160, 111518 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Robin, R. S. et al. Holistic assessment of microplastics in various coastal environmental matrices, southwest coast of India. Sci. Total Environ. 703, 134947 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kwon, O. Y., Kang, J. H., Hong, S. H. & Shim, W. J. Spatial distribution of microplastic in the surface waters along the coast of Korea. Mar. Pollut. Bull. 155, 110729 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58(8), 1225–1228 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hantoro, I., Löhr, A. J., Van Belleghem, F. G., Widianarko, B. & Ragas, A. M. Microplastics in coastal areas and seafood: Implications for food safety. Food Addit. Contam. Part A 36(5), 674–711 (2019).

    CAS 
    Article 

    Google Scholar 

  • Retama, I. et al. Microplastics in tourist beaches of Huatulco Bay, Pacific coast of southern Mexico. Mar. Pollut. Bull. 113(1–2), 530–535 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hosseini, R., Sayadi, M. H., Aazami, J. & Savabieasfehani, M. Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Mar. Pollut. Bull. 160, 111682 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Andrady, A. L. Persistence of Plastic Litter in the Oceans. Marine Anthropogenic Litter 57–72 (Springer, 2015).

  • Leads, R. R. & Weinstein, J. E. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar. Pollut. Bull. 145, 569–582 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 79(1–2), 278–283 (2014).

    PubMed 

    Google Scholar 

  • Plastics Europe. Plastics—The Facts 2017. (Plastics Europe, 2017).

  • Lusher, A. L., Welden, N. A., Sobral, P., & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. In Analysis of Nanoplastics and Microplastics in Food 119–148. (CRC Press, 2020).

  • Murray, F. & Cowie, P. R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 62(6), 1207–1217 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gray, A. D. & Weinstein, J. E. Size-and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio). Environ. Toxicol. Chem. 36(11), 3074–3080 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Au, S. Y., Bruce, T. F., Bridges, W. C. & Klaine, S. J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 34(11), 2564–2572 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47(12), 6646–6655 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Woods, M. N., Stack, M. E., Fields, D. M., Shaw, S. D. & Matrai, P. A. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Mar. Pollut. Bull. 137, 638–645 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scott, N. et al. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Mar. Pollut. Bull. 146, 125–133 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10e17 (2015).

    Google Scholar 

  • Waite, H. R., Donnelly, M. J. & Walters, L. J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 129(1), 179–185 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Quanbin, L. et al. Uptake and elimination of microplastics by Tigriopus japonicus and its impact on feeding behavior. Asian J. Ecotoxicol. 4, 184–191. https://doi.org/10.7524/AJE.1673-5897.20191216002 (2020).

    Article 

    Google Scholar 

  • Galloway, T. S. & Lewis, C. N. Marine microplastics spell big problems for future generations. Proc. Natl. Acad. Sci. U.S.A. 113(9), 2331e2333 (2016).

    Article 
    CAS 

    Google Scholar 

  • Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116. https://doi.org/10.1038/s41559-017-0116 (2017).

    Article 

    Google Scholar 

  • Carlos de Sá, L., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62(12), 2588–2597 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Key, P. B., Chung, K. W., West, J. B., Pennington, P. L. & DeLorenzo, M. E. Developmental and reproductive effects in grass shrimp (Palaemon pugio) following acute larval exposure to a thin oil sheen and ultraviolet light. Aquat. Toxicol. 228, 105651 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Allen, D. M., Harding, J. M., Stroud, K. B. & Yozzo, K. L. Movements and site fidelity of grass shrimp (Palaemonetes pugio and P. vulgaris) in salt marsh intertidal creeks. Mar. Biol. 162(6), 1275–1285 (2015).

    Article 

    Google Scholar 

  • Kunz, A. K., Ford, M. & Pung, O. J. Behavior of the grass shrimp Palaemonetes pugio and its response to the presence of the predatory fish Fundulus heteroclitus. Am. Midl. Nat. 155, 286–294. https://doi.org/10.1674/0003-0031 (2006).

    Article 

    Google Scholar 

  • Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar 

  • Cozar, A. et al. Plastic debris in the open ocean. PNAS 111, 10239e10244. https://doi.org/10.1073/pnas.1314705111 (2014).

    CAS 
    Article 

    Google Scholar 

  • Leads, R. R., Burnett, K. G. & Weinstein, J. E. The effect of microplastic ingestion on survival of the grass shrimp Palaemonetes pugio (Holthuis, 1949) challenged with Vibrio campbellii. Environ. Toxicol. Chem. 38(10), 2233–2242 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Beiras, R., Duran, I., Bellas, J. & Sanchez-Marín, P. Biological effects of contaminants: Paracentrotus lividus sea urchin embryo test with marine sediment elutriates. Int. Counc. Explor. Sea. Technol. Environ. Mar. Sci. 51, 113 (2012).

    Google Scholar 

  • Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A. M. & Sanden, M. Micro-and nanoplastic toxicity on aquatic life: Determining factors. Sci. Total Environ. 709, 136050 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Lindeque, P. K. et al. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ Pollut. 265(Pt A), 114721. https://doi.org/10.1016/j.envpol.2020.114721 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62(8), 1596e1605 (2011).

    Article 
    CAS 

    Google Scholar 

  • Leight, A. K., Scott, G. I., Fulton, M. H. & Daugomah, J. W. Long term monitoring of grass shrimp Palaemonetes spp. Population metrics at sites with agricultural runoff influences 1, 2. Integr. Comp. Biol. 45(1), 143–150 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weinstein, J. E. & Garner, T. R. Piperonyl butoxide enhances the bioconcentration and photoinduced toxicity of fluoranthene and benzo [a] pyrene to larvae of the grass shrimp (Palaemonetes pugio). Aquat. Toxicol. 87(1), 28–36 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Key, P. B., Chung, K. W., Hoguet, J., Sapozhnikova, Y. & DeLorenzo, M. E. Toxicity of the mosquito control insecticide phenothrin to three life stages of the grass shrimp (Palaemonetes pugio). J. Environ. Sci. Health B 46(5), 426–431 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Broad, A. C. Larval development of Palaemonetes pugio Holthuis. Biol. Bull. 112, 144–161 (1957).

    Article 

    Google Scholar 

  • Broad, A. C. The relationship between diet and larval development of Palaemonetes. Biol. Bull. 112, 162–170 (1957).

    Article 

    Google Scholar 

  • Sandifer, P. A. Effects of temperature and salinity on larval development of grass shrimp, Palaemonetes vulgaris (Decapoda, Caridea). Fish. Bull. 71(1), 115 (1973).

    Google Scholar 

  • Boston, M. A. & Provenzano, A. J. Attempted hybridization of the grass shrimp Palaemonetes (Caridea, palaemonidae) with an evaluation of taxonomic characters of juveniles. Estuaries 5(3), 165–174 (1982).

    Article 

    Google Scholar 

  • Anderson, G. S. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): Grass shrimp (No. 4). The Service. (1985).

  • Vikas, P. A. et al. Unraveling the effects of live microalgal enrichment on Artemia nauplii. Indian J. Fish. 59(4), 111–121 (2012).

    Google Scholar 

  • Provenzano, A. J., Schmitz, K. B. & Boston, M. A. Survival, duration of larval stages, and size of postlarvae of grass shrimp, Palaemonetes pugio, reared from Kepone® contaminated and uncontaminated populations in Chesapeake Bay. Estuaries 1(4), 239–244 (1978).

    Article 

    Google Scholar 

  • Johnson, W. S., & Allen, D. M. Zooplankton of the Atlantic and Gulf Coasts: A Guide to Their Identification and Ecology. (JHU Press, 2012).

  • Hubschman, J. H. The development and function of neurosecretory sites in the eyestalks of larval Palaemonetes (Decapoda: Natantia) (Doctoral dissertation, The Ohio State University, 1962).

  • Wheeler, M. W., Park, R. M. & Bailer, A. J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. Int. J. 25(5), 1441–1444 (2006).

    CAS 
    Article 

    Google Scholar 

  • Isobe, A., Kubo, K., Tamura, Y., Nakashima, E. & Fujii, N. Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 89(1–2), 324–330 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Syakti, A. D. et al. Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia. Mar. Pollut. Bull. 122(1–2), 217–225. https://doi.org/10.1016/j.marpolbul.2017.06.046 (2017) (Epub 2017 Jun 20 PMID: 28645761).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Reisser, J. et al. Marine plastic pollution in waters around Australia: Characteristics, concentrations, and pathways. PLoS One 8(11), e80466 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Järlskog, I. et al. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 729, 138950. https://doi.org/10.1016/j.scitotenv.2020.138950 (2020) (Epub 2020 Apr 26. PMID: 32371211).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Key, P. B., Fulton, M. H., Scott, G. I., Layman, S. L. & Wirth, E. F. Lethal and sublethal effects of malathion on three life stages of the grass shrimp, Palaemonetes pugio. Aquat. Toxicol. 40(4), 311–322 (1998).

    CAS 
    Article 

    Google Scholar 

  • DeLorenzo, M. E., Serrano, L., Chung, K. W., Hoguet, J. & Key, P. B. Effects of the insecticide permethrin on three life stages of the grass shrimp, Palaemonetes pugio. Ecotoxicol. Environ. Saf. 64(2), 122–127 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Key, P. B., Meyer, S. L. & Chung, K. W. Lethal and sub-lethal effects of the fungicide chlorothalonil on three life stages of the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health B 38(5), 539–549 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Key, P. B., Chung, K. W., Hoguet, J., Shaddrix, B. & Fulton, M. H. Toxicity and physiological effects of brominated flame retardant PBDE-47 on two life stages of grass shrimp, Palaemonetes pugio. Sci. Total Environ. 399(1–3), 28–32 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. & Koelmans, A. A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 52(4), 2278–2286 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lehtiniemi, M. et al. Exposure to leachates from post-consumer plastic and recycled rubber causes stress responses and mortality in a copepod Limnocalanus macrurus. Mar. Pollut. Bull. 173, 113103 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martínez-Gómez, C., León, V. M., Calles, S., Gomáriz-Olcina, M. & Vethaak, A. D. The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins. Mar. Environ. Res. 130, 69–76 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Khosrovyan, A., Gabrielyan, B. & Kahru, A. Ingestion and effects of virgin polyamide microplastics on Chironomus riparius adult larvae and adult zebrafish Danio rerio. Chemosphere 259, 127456 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Le Bihanic, F. et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar Pollut Bull. 154, 111059. https://doi.org/10.1016/j.marpolbul.2020.111059 (2020) (Epub 2020 Mar 31 PMID: 32319895).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • LeMoine, C. M. et al. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio). Environ. Pollut. 243, 591–600 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Freeman, J. A. Regulation of tissue growth in crustacean larvae by feeding regime. Biol. Bull. 178(3), 217–221 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ma, H. et al. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 261, 114089 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Machine learning, harnessed to extreme computing, aids fusion energy development

    From seawater to drinking water, with the push of a button