Ollerton, J. Pollinators & Pollination: Nature and Society (Pelagic Publishing, 2021).
Delaplane, K. S. Crop pollination By Bees: Evolution, Ecology, Conservation, and Management (CABI, 2021).
Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).
Google Scholar
Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl. Acad. Sci. 113, 140–145 (2016).
Google Scholar
Jordan, A., Patch, H. M., Grozinger, C. M. & Khanna, V. Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service. Environ. Sci. Technol. 55, 2243–2253 (2021).
Google Scholar
Biddinger, D. J. & Rajotte, E. G. Integrated pest and pollinator management: Adding a new dimension to an accepted paradigm. Curr. Opin. Insect Sci. 10, 204–209 (2015).
Google Scholar
Egan, P. A., Dicks, L. V., Hokkanen, H. M. T. & Stenberg, J. A. Delivering integrated pest and pollinator management (IPPM). Trends Plant Sci. 25, 577–589 (2020).
Google Scholar
Flöhr, A., Stenberg, J. A. & Egan, P. A. The Joint Economic Impact Level (jEIL): A Decision Metric for Integrated Pest and Pollinator Management. In Integrative Biological Control 17–38 (Springer, 2020).
Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7, e29268 (2012).
Google Scholar
Traynor, K. S. et al. In-hive pesticide exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci. Rep. 6, 1–16 (2016).
Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 5, e9754 (2010).
Google Scholar
Ravoet, J., Reybroeck, W. & de Graaf, D. C. Pesticides for apicultural and/or agricultural application found in belgian honey bee wax combs. Bull. Environ. Contam. Toxicol. 94, 543–548 (2015).
Google Scholar
Liang, H. C., Bilon, N. & Hay, M. T. Analytical methods for pesticide residues. Water Environ. Res. 86, 2132–2155 (2014).
Google Scholar
Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honey bees. MethodsX 3, 452–458 (2016).
Google Scholar
Fernandez, M., Pico, Y. & Manes, J. Analytical methods for pesticide residue determination in bee products. J. Food Prot. 65, 1502–1511 (2002).
Google Scholar
Vázquez, P. P., Lozano, A., Uclés, S., Ramos, M. M. G. & Fernández-Alba, A. R. A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 1426, 161–173 (2015).
Google Scholar
Stoner, K. A., Cowles, R. S., Nurse, A. & Eitzer, B. D. Tracking pesticide residues to a plant genus using palynology in pollen trapped from honey bees (Hymenoptera: Apidae) at ornamental plant nurseries. Environ. Entomol. 48, 351–362 (2019).
Google Scholar
Colwell, M. J., Williams, G. R., Evans, R. C. & Shutler, D. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecol. Evol. 7, 7243–7253 (2017).
Google Scholar
Favaro, R. et al. Botanical origin of pesticide residues in pollen loads collected by honeybees during and after apple bloom. Front. Physiol. 10, 1069 (2019).
Google Scholar
Tosi, S., Costa, C., Vesco, U., Quaglia, G. & Guido, G. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ. 615, 208–218 (2018).
Google Scholar
Chaimanee, V., Chantawannakul, P., Khongphinitbunjong, K., Kamyo, T. & Pettis, J. S. Comparative pesticide exposure to Apis mellifera via honey bee-collected pollen in agricultural and non-agricultural areas of Northern Thailand. J. Apic. Res. 58, 720–729 (2019).
Friedle, C., Wallner, K., Rosenkranz, P., Martens, D. & Vetter, W. Pesticide residues in daily bee pollen samples (April–July) from an intensive agricultural region in Southern Germany. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-12318-2 (2021).
Google Scholar
Urbanowicz, C. et al. Low maize pollen collection and low pesticide risk to honey bees in heterogeneous agricultural landscapes. Apidologie 50, 379–390 (2019).
Stoner, K. A. & Eitzer, B. D. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS ONE 8, e77550 (2013).
Google Scholar
McArt, S. H., Fersch, A. A., Milano, N. J., Truitt, L. L. & Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7, 1–10 (2017).
Calatayud-Vernich, P., Calatayud, F., Simó, E., Pascual Aguilar, J. A. & Picó, Y. A two-year monitoring of pesticide hazard in-hive: High honey bee mortality rates during insecticide poisoning episodes in apiaries located near agricultural settings. Chemosphere 232, 471–480 (2019).
Google Scholar
García-Valcárcel, A. I., Martínez-Ferrer, M. T., Campos-Rivela, J. M. & Hernando Guil, M. D. Analysis of pesticide residues in honeybee (Apis mellifera L.) and in corbicular pollen: Exposure in citrus orchard with an integrated pest management system. Talanta 204, 153–162 (2019).
Google Scholar
Fulton, C. A. et al. An assessment of pesticide exposures and land use of honey bees in Virginia. Chemosphere 222, 489–493 (2019).
Google Scholar
Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 241, 106–114 (2018).
Google Scholar
Ostiguy, N. et al. Honey bee exposure to pesticides: A four-year nationwide study. Insects 10, 13 (2019).
Google Scholar
Seeley, T. D. The honey bee colony as a superorganism. Am. Sci. 77, 546–553 (1989).
Google Scholar
Thompson, H. M. & Maus, C. The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manag. Sci. 63, 1058–1061 (2007).
Google Scholar
Sponsler, D. B. & Johnson, R. M. Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology. Environ. Toxicol. Chem. 36, 871–881 (2017).
Google Scholar
Gradish, A. E. et al. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera: Apidae): implications for risk assessments. Environ. Entomol. 48, 12–21 (2019).
Google Scholar
Tosi, S. & Nieh, J. C. Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees. Proc. R. Soc. B 286, 20190433 (2019).
Google Scholar
Iverson, A., Hale, C., Richardson, L., Miller, O. & McArt, S. Synergistic effects of three sterol biosynthesis inhibiting fungicides on the toxicity of a pyrethroid and neonicotinoid insecticide to bumble bees. Apidologie 50, 733 (2019).
Google Scholar
Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392 (2021).
Google Scholar
Graham, K. K. et al. Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination. Sci. Rep. 11, 1–13 (2021).
EFSA. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. https://doi.org/10.2903/j.efsa.2013.3295 (2013).
Google Scholar
EPA. Guidance for assessing pesticide risks to bees. (2014).
USDA APHIS. Wax Sampling Protocol for the National Honey Bee Disease Survey. (2018).
European Committee for Standardization. Foods of plant origin – Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE – Modular QuEChERS-method. (2018).
Couvillon, M. J. et al. Honey bee foraging distance depends on month and forage type. Apidologie 46, 61–70 (2015).
Knight, M. E. et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol. Ecol. 14, 1811–1820 (2005).
Google Scholar
McArt, S. H., Urbanowicz, C., Mccoshum, S., Irwin, R. E. & Adler, L. S. Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proc. R. Soc. B 284, 20172181 (2017).
Google Scholar
USDA NASS. USDA National Agricultural Statistics Service Cropland Data Layer. (2018).
R Core Team. R: A Language and Environment for Statistical Computing. (2019).
GraphPad Software. GraphPad Prism. (2017).
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2019).
Barton, K. MuMIn: Multi-Model Inference. (2019).
Fox, J. & Weisburg, S. An {R} Companion to Applied Regression. (2011).
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).
Google Scholar
Fox, J. RcmdrMisc: R Commander Miscellaneous Functions. (2020).
Bhattacharya, M., Primack, R. B. & Gerwein, J. Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area?. Biol. Conserv. 109, 37–45 (2003).
Fragoso, F. P. & Brunet, J. Patch fidelity of honey bees and bumble bees differs and is affected by spatial configuration. In Entomological Society of America Annual Meeting, Plant-Insect Ecosystems (2021).
Javorek, S. K., Mackenzie, K. E. & Vander Kloet, S. P. Comparative (Hymenoptera: Apoidea) on Lowbush Blueberry (Ericaceae: Vaccinium angustifolium). Ann. Entomol. Soc. Am. 95, 345–351 (2002).
Sandrock, C. et al. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE 9, e103592 (2014).
Google Scholar
Wood, S. C., Kozii, I. V., Koziy, R. V., Epp, T. & Simko, E. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees. PLoS ONE 13, e0190517 (2018).
Google Scholar
Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. https://doi.org/10.1093/jee/toz213 (2019).
Google Scholar
Biddinger, D. J. et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE 8, e72587 (2013).
Google Scholar
Johnson, R. M., Dahlgren, L., Siegfried, B. D. & Ellis, M. D. Acaricide, fungicide and drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 8, e54092 (2013).
Google Scholar
Jaffe, B. D., Lois, A. N. & Guédot, C. Effect of fungicide on pollen foraging by honeybees (Hymenoptera: Apidae) in cranberry differs by fungicide type. J. Econ. Entomol. 112, 499–503 (2019).
Google Scholar
Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: A risk assessment. PLoS ONE 9, e94482 (2014).
Google Scholar
Wang, Y., Zhu, Y. C. & Li, W. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotoxicol. Environ. Saf. 190, 110100 (2020).
Google Scholar
Wang, Y., Zhu, Y. C. & Li, W. Comparative examination on synergistic toxicities of chlorpyrifos, acephate, or tetraconazole mixed with pyrethroid insecticides to honey bees (Apis mellifera L.). Environ. Sci. Pollut. Res. 27, 6971–6980 (2019).
Sgolastra, F. et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag. Sci. 73, 1236–1243 (2017).
Google Scholar
Azpiazu, C. et al. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Sci. Reports 9, 1–11 (2019).
Google Scholar
Becher, M. A., Hildenbrandt, H., Hemelrijk, C. K. & Moritz, R. F. A. Brood temperature, task division and colony survival in honeybees: A model. Ecol. Modell. 221, 769–776 (2010).
Zhu, W., Schmehl, D. R., Mullin, C. A. & Frazier, J. L. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 9, e77547 (2014).
Google Scholar
Dai, P. et al. Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to Apis mellifera L. larvae reared in vitro. Pest Manag. Sci. 75, 29–36 (2019).
Google Scholar
Campbell, J. B. et al. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees. J. Insect Physiol. 86, 11–16 (2016).
Google Scholar
DesJardins, N. S. et al. A common fungicide, Pristine®, impairs olfactory associative learning performance in honey bees (Apis mellifera). Environ. Pollut. 288, 117720 (2021).
Google Scholar
Fisher, A. et al. Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (Apis mellifera). Environ. Pollut. 269, 115964 (2021).
Google Scholar
Mahefarisoa, K. L., Simon Delso, N., Zaninotto, V., Colin, M. E. & Bonmatin, J. M. The threat of veterinary medicinal products and biocides on pollinators: A one health perspective. One Heal. 12, 100237 (2021).
Google Scholar
Christen, V., Schirrmann, M., Frey, J. E. & Fent, K. Global transcriptomic effects of environmentally relevant concentrations of the neonicotinoids clothianidin, imidacloprid, and thiamethoxam in the brain of honey bees (Apis mellifera). Environ. Sci. Technol. 52, 7534–7544 (2018).
Google Scholar
Tison, L., Duer, A., Púčiková, V., Greggers, U. & Menzel, R. Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONE 15, e0241134 (2020).
Google Scholar
Tison, L., Rößner, A., Gerschewski, S. & Menzel, R. The neonicotinoid clothianidin impairs memory processing in honey bees. Ecotoxicol. Environ. Saf. 180, 139–145 (2019).
Google Scholar
Morfin, N., Goodwin, P. H., Correa-Benitez, A. & Guzman-Novoa, E. Sublethal exposure to clothianidin during the larval stage causes long-term impairment of hygienic and foraging behaviours of honey bees. Apidologie 50, 595–605 (2019).
Google Scholar
Yao, J., Zhu, Y. C. & Adamczyk, J. Responses of honey bees to lethal and sublethal doses of formulated clothianidin alone and mixtures. J. Econ. Entomol. 111, 1517–1525 (2018).
Google Scholar
Bortolotti, L. et al. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology 56, 63–67 (2003).
Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101, 1743–1748 (2008).
Google Scholar
Karahan, A., Cakmak, I., Hranitz, J. M., Karaca, I. & Wells, H. Sublethal imidacloprid effects on honey bee flower choices when foraging. Ecotoxicology 24, 2017–2025 (2015).
Google Scholar
Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J. & Pettis, J. S. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS ONE 10, 1–25 (2015).
Meikle, W. G. et al. Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the U.S.. PLoS ONE https://doi.org/10.1371/journal.pone.0168603 (2016).
Google Scholar
Wu, Y.-Y. et al. Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L.. Sci. Rep. https://doi.org/10.1038/s41598-017-16245-0 (2017).
Google Scholar
Wu, M.-C., Chang, Y.-W., Lu, K.-H. & Yang, E.-C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochem. Mol. Biol. 88, 12–20 (2017).
Google Scholar
Peng, Y.-C. & Yang, E.-C. Sublethal dosage of imidacloprid reduces the microglomerular density of honey bee mushroom bodies. Sci. Rep. https://doi.org/10.1038/srep19298 (2016).
Google Scholar
de Almeida-Rossi, C., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P. & Malaspina, O. Brain morphophysiology of africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch. Environ. Contam. Toxicol. 65, 234–243 (2013).
Google Scholar
Tosi, S., Burgio, G. & Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci. Reports 7, 1–8 (2017).
Coulon, M. et al. Interactions between thiamethoxam and deformed wing virus can drastically impair flight behavior of honey bees. Front. Microbiol. 0, 766 (2020).
Shi, T.-F., Wang, Y.-F., Liu, F., Qi, L. & Yu, L.-S. Sublethal effects of the neonicotinoid insecticide thiamethoxam on the transcriptome of the honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 110, 2283–2289 (2017).
Google Scholar
Tesovnik, T. et al. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environ. Pollut. 256, 113443 (2020).
Google Scholar
Friol, P. S., Catae, A. F., Tavares, D. A., Malaspina, O. & Roat, T. C. Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?. Chemosphere 185, 56–66 (2017).
Google Scholar
Coulon, M. et al. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS ONE 14, e0220703 (2019).
Google Scholar
Stoner, K. A. & Eitzer, B. D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 7, e39114 (2012).
Google Scholar
Rolke, D., Persigehl, M., Peters, B., Sterk, G. & Blenau, W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology 25, 1691–1701 (2016).
Google Scholar
Wood, T. J., Kaplan, I., Zhang, Y. & Szendrei, Z. Honeybee dietary neonicotinoid exposure is associated with pollen collection from agricultural weeds. Proc. R. Soc. B 286, 1905 (2019).
Urlacher, E. et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42, 127–138 (2016).
Google Scholar
Villalba, A., Maggi, M., Ondarza, P. M., Szawarski, N. & Miglioranza, K. S. B. Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Sci. Total Environ. 713, 136554 (2020).
Google Scholar
Traynor, K. S. et al. Pesticides in honey bee colonies: Establishing a baseline for real world exposure over seven years in the USA. Environ. Pollut. https://doi.org/10.1016/j.envpol.2021.116566 (2021).
Google Scholar
EPA Press Office. EPA Takes Action to Address Risk from Chlorpyrifos and Protect Children’s Health. (2021).
Arena, M. & Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 233(23), 324–334 (2014).
Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol 63, 327–344. https://doi.org/10.1146/annurev-ento-020117-043423 (2018).
Google Scholar
Michener, C. D. The Social Behavior of the Bees: A Comparative Study (Belknap Press of Harvard University Press, 1974).
Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. https://doi.org/10.1242/jeb.114249 (2015).
Google Scholar
Böhme, F., Bischoff, G., Zebitz, C. P. W., Rosenkranz, P. & Wallner, K. Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE 13, e0199995 (2018).
Google Scholar
Schilder, A. M. C., Hanson, E. J. & Hancock, J. F. An integrated approach to disease control in blueberries in Michigan. Acta Hortic. 715, 481–488 (2006).
Google Scholar
Wise, J. C., Jenkins, P. E., Poppen, R. V. & Isaacs, R. Activity of broad-spectrum and reduced-risk insecticides on various life stages of cranberry fruitworm (Lepidoptera: Pyralidae) in Highbush Blueberry. J. Econ. Entomol. 103, 1720–1728 (2010).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Google Scholar
Source: Ecology - nature.com