in

Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures

  • Ollerton, J. Pollinators & Pollination: Nature and Society (Pelagic Publishing, 2021).

    Google Scholar 

  • Delaplane, K. S. Crop pollination By Bees: Evolution, Ecology, Conservation, and Management (CABI, 2021).

    Google Scholar 

  • Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl. Acad. Sci. 113, 140–145 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jordan, A., Patch, H. M., Grozinger, C. M. & Khanna, V. Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service. Environ. Sci. Technol. 55, 2243–2253 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Biddinger, D. J. & Rajotte, E. G. Integrated pest and pollinator management: Adding a new dimension to an accepted paradigm. Curr. Opin. Insect Sci. 10, 204–209 (2015).

    PubMed 

    Google Scholar 

  • Egan, P. A., Dicks, L. V., Hokkanen, H. M. T. & Stenberg, J. A. Delivering integrated pest and pollinator management (IPPM). Trends Plant Sci. 25, 577–589 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Flöhr, A., Stenberg, J. A. & Egan, P. A. The Joint Economic Impact Level (jEIL): A Decision Metric for Integrated Pest and Pollinator Management. In Integrative Biological Control 17–38 (Springer, 2020).

    Google Scholar 

  • Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7, e29268 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Traynor, K. S. et al. In-hive pesticide exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci. Rep. 6, 1–16 (2016).

    Google Scholar 

  • Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 5, e9754 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ravoet, J., Reybroeck, W. & de Graaf, D. C. Pesticides for apicultural and/or agricultural application found in belgian honey bee wax combs. Bull. Environ. Contam. Toxicol. 94, 543–548 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, H. C., Bilon, N. & Hay, M. T. Analytical methods for pesticide residues. Water Environ. Res. 86, 2132–2155 (2014).

    CAS 

    Google Scholar 

  • Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honey bees. MethodsX 3, 452–458 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandez, M., Pico, Y. & Manes, J. Analytical methods for pesticide residue determination in bee products. J. Food Prot. 65, 1502–1511 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Vázquez, P. P., Lozano, A., Uclés, S., Ramos, M. M. G. & Fernández-Alba, A. R. A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 1426, 161–173 (2015).

    PubMed 

    Google Scholar 

  • Stoner, K. A., Cowles, R. S., Nurse, A. & Eitzer, B. D. Tracking pesticide residues to a plant genus using palynology in pollen trapped from honey bees (Hymenoptera: Apidae) at ornamental plant nurseries. Environ. Entomol. 48, 351–362 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colwell, M. J., Williams, G. R., Evans, R. C. & Shutler, D. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecol. Evol. 7, 7243–7253 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Favaro, R. et al. Botanical origin of pesticide residues in pollen loads collected by honeybees during and after apple bloom. Front. Physiol. 10, 1069 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tosi, S., Costa, C., Vesco, U., Quaglia, G. & Guido, G. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ. 615, 208–218 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chaimanee, V., Chantawannakul, P., Khongphinitbunjong, K., Kamyo, T. & Pettis, J. S. Comparative pesticide exposure to Apis mellifera via honey bee-collected pollen in agricultural and non-agricultural areas of Northern Thailand. J. Apic. Res. 58, 720–729 (2019).

    Google Scholar 

  • Friedle, C., Wallner, K., Rosenkranz, P., Martens, D. & Vetter, W. Pesticide residues in daily bee pollen samples (April–July) from an intensive agricultural region in Southern Germany. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-12318-2 (2021).

    Article 

    Google Scholar 

  • Urbanowicz, C. et al. Low maize pollen collection and low pesticide risk to honey bees in heterogeneous agricultural landscapes. Apidologie 50, 379–390 (2019).

    Google Scholar 

  • Stoner, K. A. & Eitzer, B. D. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS ONE 8, e77550 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McArt, S. H., Fersch, A. A., Milano, N. J., Truitt, L. L. & Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7, 1–10 (2017).

    Google Scholar 

  • Calatayud-Vernich, P., Calatayud, F., Simó, E., Pascual Aguilar, J. A. & Picó, Y. A two-year monitoring of pesticide hazard in-hive: High honey bee mortality rates during insecticide poisoning episodes in apiaries located near agricultural settings. Chemosphere 232, 471–480 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • García-Valcárcel, A. I., Martínez-Ferrer, M. T., Campos-Rivela, J. M. & Hernando Guil, M. D. Analysis of pesticide residues in honeybee (Apis mellifera L.) and in corbicular pollen: Exposure in citrus orchard with an integrated pest management system. Talanta 204, 153–162 (2019).

    PubMed 

    Google Scholar 

  • Fulton, C. A. et al. An assessment of pesticide exposures and land use of honey bees in Virginia. Chemosphere 222, 489–493 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 241, 106–114 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Ostiguy, N. et al. Honey bee exposure to pesticides: A four-year nationwide study. Insects 10, 13 (2019).

    PubMed Central 

    Google Scholar 

  • Seeley, T. D. The honey bee colony as a superorganism. Am. Sci. 77, 546–553 (1989).

    ADS 

    Google Scholar 

  • Thompson, H. M. & Maus, C. The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manag. Sci. 63, 1058–1061 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Sponsler, D. B. & Johnson, R. M. Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology. Environ. Toxicol. Chem. 36, 871–881 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Gradish, A. E. et al. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera: Apidae): implications for risk assessments. Environ. Entomol. 48, 12–21 (2019).

    PubMed 

    Google Scholar 

  • Tosi, S. & Nieh, J. C. Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees. Proc. R. Soc. B 286, 20190433 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iverson, A., Hale, C., Richardson, L., Miller, O. & McArt, S. Synergistic effects of three sterol biosynthesis inhibiting fungicides on the toxicity of a pyrethroid and neonicotinoid insecticide to bumble bees. Apidologie 50, 733 (2019).

    CAS 

    Google Scholar 

  • Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Graham, K. K. et al. Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination. Sci. Rep. 11, 1–13 (2021).

    Google Scholar 

  • EFSA. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. https://doi.org/10.2903/j.efsa.2013.3295 (2013).

    Article 

    Google Scholar 

  • EPA. Guidance for assessing pesticide risks to bees. (2014).

  • USDA APHIS. Wax Sampling Protocol for the National Honey Bee Disease Survey. (2018).

  • European Committee for Standardization. Foods of plant origin – Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE – Modular QuEChERS-method. (2018).

  • Couvillon, M. J. et al. Honey bee foraging distance depends on month and forage type. Apidologie 46, 61–70 (2015).

    Google Scholar 

  • Knight, M. E. et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol. Ecol. 14, 1811–1820 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • McArt, S. H., Urbanowicz, C., Mccoshum, S., Irwin, R. E. & Adler, L. S. Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proc. R. Soc. B 284, 20172181 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • USDA NASS. USDA National Agricultural Statistics Service Cropland Data Layer. (2018).

  • R Core Team. R: A Language and Environment for Statistical Computing. (2019).

  • GraphPad Software. GraphPad Prism. (2017).

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2019).

  • Barton, K. MuMIn: Multi-Model Inference. (2019).

  • Fox, J. & Weisburg, S. An {R} Companion to Applied Regression. (2011).

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).

    Google Scholar 

  • Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Fox, J. RcmdrMisc: R Commander Miscellaneous Functions. (2020).

  • Bhattacharya, M., Primack, R. B. & Gerwein, J. Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area?. Biol. Conserv. 109, 37–45 (2003).

    Google Scholar 

  • Fragoso, F. P. & Brunet, J. Patch fidelity of honey bees and bumble bees differs and is affected by spatial configuration. In Entomological Society of America Annual Meeting, Plant-Insect Ecosystems (2021).

  • Javorek, S. K., Mackenzie, K. E. & Vander Kloet, S. P. Comparative (Hymenoptera: Apoidea) on Lowbush Blueberry (Ericaceae: Vaccinium angustifolium). Ann. Entomol. Soc. Am. 95, 345–351 (2002).

    Google Scholar 

  • Sandrock, C. et al. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE 9, e103592 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, S. C., Kozii, I. V., Koziy, R. V., Epp, T. & Simko, E. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees. PLoS ONE 13, e0190517 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. https://doi.org/10.1093/jee/toz213 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Biddinger, D. J. et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE 8, e72587 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, R. M., Dahlgren, L., Siegfried, B. D. & Ellis, M. D. Acaricide, fungicide and drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 8, e54092 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaffe, B. D., Lois, A. N. & Guédot, C. Effect of fungicide on pollen foraging by honeybees (Hymenoptera: Apidae) in cranberry differs by fungicide type. J. Econ. Entomol. 112, 499–503 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: A risk assessment. PLoS ONE 9, e94482 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y., Zhu, Y. C. & Li, W. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotoxicol. Environ. Saf. 190, 110100 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y., Zhu, Y. C. & Li, W. Comparative examination on synergistic toxicities of chlorpyrifos, acephate, or tetraconazole mixed with pyrethroid insecticides to honey bees (Apis mellifera L.). Environ. Sci. Pollut. Res. 27, 6971–6980 (2019).

    Google Scholar 

  • Sgolastra, F. et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag. Sci. 73, 1236–1243 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Azpiazu, C. et al. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Sci. Reports 9, 1–11 (2019).

    CAS 

    Google Scholar 

  • Becher, M. A., Hildenbrandt, H., Hemelrijk, C. K. & Moritz, R. F. A. Brood temperature, task division and colony survival in honeybees: A model. Ecol. Modell. 221, 769–776 (2010).

    Google Scholar 

  • Zhu, W., Schmehl, D. R., Mullin, C. A. & Frazier, J. L. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 9, e77547 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, P. et al. Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to Apis mellifera L. larvae reared in vitro. Pest Manag. Sci. 75, 29–36 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Campbell, J. B. et al. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees. J. Insect Physiol. 86, 11–16 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • DesJardins, N. S. et al. A common fungicide, Pristine®, impairs olfactory associative learning performance in honey bees (Apis mellifera). Environ. Pollut. 288, 117720 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Fisher, A. et al. Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (Apis mellifera). Environ. Pollut. 269, 115964 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mahefarisoa, K. L., Simon Delso, N., Zaninotto, V., Colin, M. E. & Bonmatin, J. M. The threat of veterinary medicinal products and biocides on pollinators: A one health perspective. One Heal. 12, 100237 (2021).

    CAS 

    Google Scholar 

  • Christen, V., Schirrmann, M., Frey, J. E. & Fent, K. Global transcriptomic effects of environmentally relevant concentrations of the neonicotinoids clothianidin, imidacloprid, and thiamethoxam in the brain of honey bees (Apis mellifera). Environ. Sci. Technol. 52, 7534–7544 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tison, L., Duer, A., Púčiková, V., Greggers, U. & Menzel, R. Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONE 15, e0241134 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tison, L., Rößner, A., Gerschewski, S. & Menzel, R. The neonicotinoid clothianidin impairs memory processing in honey bees. Ecotoxicol. Environ. Saf. 180, 139–145 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Morfin, N., Goodwin, P. H., Correa-Benitez, A. & Guzman-Novoa, E. Sublethal exposure to clothianidin during the larval stage causes long-term impairment of hygienic and foraging behaviours of honey bees. Apidologie 50, 595–605 (2019).

    CAS 

    Google Scholar 

  • Yao, J., Zhu, Y. C. & Adamczyk, J. Responses of honey bees to lethal and sublethal doses of formulated clothianidin alone and mixtures. J. Econ. Entomol. 111, 1517–1525 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Bortolotti, L. et al. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology 56, 63–67 (2003).

    Google Scholar 

  • Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101, 1743–1748 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Karahan, A., Cakmak, I., Hranitz, J. M., Karaca, I. & Wells, H. Sublethal imidacloprid effects on honey bee flower choices when foraging. Ecotoxicology 24, 2017–2025 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J. & Pettis, J. S. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS ONE 10, 1–25 (2015).

    Google Scholar 

  • Meikle, W. G. et al. Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the U.S.. PLoS ONE https://doi.org/10.1371/journal.pone.0168603 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y.-Y. et al. Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L.. Sci. Rep. https://doi.org/10.1038/s41598-017-16245-0 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, M.-C., Chang, Y.-W., Lu, K.-H. & Yang, E.-C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochem. Mol. Biol. 88, 12–20 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Peng, Y.-C. & Yang, E.-C. Sublethal dosage of imidacloprid reduces the microglomerular density of honey bee mushroom bodies. Sci. Rep. https://doi.org/10.1038/srep19298 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Almeida-Rossi, C., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P. & Malaspina, O. Brain morphophysiology of africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch. Environ. Contam. Toxicol. 65, 234–243 (2013).

    PubMed 

    Google Scholar 

  • Tosi, S., Burgio, G. & Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci. Reports 7, 1–8 (2017).

    Google Scholar 

  • Coulon, M. et al. Interactions between thiamethoxam and deformed wing virus can drastically impair flight behavior of honey bees. Front. Microbiol. 0, 766 (2020).

    Google Scholar 

  • Shi, T.-F., Wang, Y.-F., Liu, F., Qi, L. & Yu, L.-S. Sublethal effects of the neonicotinoid insecticide thiamethoxam on the transcriptome of the honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 110, 2283–2289 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Tesovnik, T. et al. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environ. Pollut. 256, 113443 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Friol, P. S., Catae, A. F., Tavares, D. A., Malaspina, O. & Roat, T. C. Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?. Chemosphere 185, 56–66 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Coulon, M. et al. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS ONE 14, e0220703 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoner, K. A. & Eitzer, B. D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 7, e39114 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rolke, D., Persigehl, M., Peters, B., Sterk, G. & Blenau, W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology 25, 1691–1701 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, T. J., Kaplan, I., Zhang, Y. & Szendrei, Z. Honeybee dietary neonicotinoid exposure is associated with pollen collection from agricultural weeds. Proc. R. Soc. B 286, 1905 (2019).

    Google Scholar 

  • Urlacher, E. et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42, 127–138 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Villalba, A., Maggi, M., Ondarza, P. M., Szawarski, N. & Miglioranza, K. S. B. Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Sci. Total Environ. 713, 136554 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Traynor, K. S. et al. Pesticides in honey bee colonies: Establishing a baseline for real world exposure over seven years in the USA. Environ. Pollut. https://doi.org/10.1016/j.envpol.2021.116566 (2021).

    Article 
    PubMed 

    Google Scholar 

  • EPA Press Office. EPA Takes Action to Address Risk from Chlorpyrifos and Protect Children’s Health. (2021).

  • Arena, M. & Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 233(23), 324–334 (2014).

    Google Scholar 

  • Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol 63, 327–344. https://doi.org/10.1146/annurev-ento-020117-043423 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Michener, C. D. The Social Behavior of the Bees: A Comparative Study (Belknap Press of Harvard University Press, 1974).

    Google Scholar 

  • Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. https://doi.org/10.1242/jeb.114249 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Böhme, F., Bischoff, G., Zebitz, C. P. W., Rosenkranz, P. & Wallner, K. Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE 13, e0199995 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schilder, A. M. C., Hanson, E. J. & Hancock, J. F. An integrated approach to disease control in blueberries in Michigan. Acta Hortic. 715, 481–488 (2006).

    CAS 

    Google Scholar 

  • Wise, J. C., Jenkins, P. E., Poppen, R. V. & Isaacs, R. Activity of broad-spectrum and reduced-risk insecticides on various life stages of cranberry fruitworm (Lepidoptera: Pyralidae) in Highbush Blueberry. J. Econ. Entomol. 103, 1720–1728 (2010).

    PubMed 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing

    Absent legislative victory, the president can still meet US climate goals