The world’s population is rapidly urbanizing, particularly along coastlines, where population density is now three times higher than the global average1,2. According to the National Oceanic and Atmospheric Administration (NOAA), almost 40% of the United States (U.S.) population resides in coastal zones with population density being over five times greater in coastal shoreline counties than the national average. As a result, human encroachment on coastal ecosystems is significantly modifying natural landscapes and reducing intact coastal habitat. Along densely populated coastlines, residential development often involves unsustainable land-use planning and armoring of shorelines, where natural habitats such as saltmarshes, mangroves, seagrasses and oyster reefs, are replaced with artificial structures, including vertical bulkheads, seawalls, boat ramps, and other gray infrastructures3. In areas with dense residential development between 50–90% of shorelines can be armored, whereby, on average, 14% of all U.S. shorelines have been modified from their natural conditions and replaced with artificial structures3. This transition represents an extensive loss of natural coastal habitats and the critical ecosystem services they provide.
As more ecologically harmful infrastructure is developed to meet the demands of human population growth, urbanization concurrently alters ecosystem services and functions by negatively impacting biodiversity, ecological conditions and environmental quality, specifically through a decrease in native habitat, increased water pollution, and creation of impervious surfaces4. Urbanization may also lead to less resilient and adaptable coastal communities against natural hazards and climate change threats, such as sea level rise and hurricanes. This is because in urban areas, ecosystem functioning is reduced and associated services are lost, resulting in increasing risk of shoreline erosion, saltwater intrusion, storm surges, and coastal flooding2,5.
These human-environment interactions in coastal ecosystems can lead to, and at the same time be derived by, decisions that will shape the future structure, function, and sustainability of coastal ecosystems6. These social decisions (e.g., large-scale policies or individual level choices) can have long-lasting consequences for both the environment and society, especially as coastal development increases. Decisions that modify and change the biophysical nature of the environment (e.g., waterfront residents’ decision to use artificial structures for storm protection and shoreline stabilization) impact its ecological functionality7. At the same time, these alterations may change the degree of connectivity that individual humans have to their environments, which might extend to broader societies’ ecological knowledge8,9.
Few studies provide evidence that the removal and lack of natural environments in urbanized environments reduces individuals’ environmental connectedness and ecological knowledge, and subsequently lowers pro-environmental behaviors10,11,12. This is of critical importance since a general lack of environmental connectedness, and in particular, a lack of ecological knowledge is a phenomenon often used to explain the non-appreciation of, and deleterious behaviors toward, the natural environment, even though many studies theorize these relationships opposed to empirically test them (e.g., see refs. 13,14 and the discussion in ref. 15 about “nature-deficit disorder”). Furthermore, if there exists a general lack of ecological knowledge, social decisions at the individual level that reflect these limited perceptions (e.g., utilitarian land-use decisions12 or waterfront homeowners’ preference to install a bulkhead) can often cascade to larger societal impacts through domino-effects, where individual decisions trigger similar, reactive decisions by neighbors leading to broader societal patterns16. For example, Gittman et al.17 found that one of the stronger predictors of an individual decision to have an armored shoreline was presence of armoring on a neighboring parcel. When considered across a community scale, such societal patterns can alter natural coastal habitats significantly.
In this current study, we investigate the relationship between residents’ knowledge, or mental models, of human-environment interactions, their self-reported pro-environmental behavior, and how these perceptions and behaviors are associated with urbanization. A mental model is the cognitive internal representation of a system in the external world that articulates causal relationships among system components (i.e., abstract concepts)18,19. Mental models that represent causal knowledge can be graphically obtained through cognitive mapping techniques in the form of directed graphs, which are networks in which nodes represent concepts (i.e., system components) and graph edges (arrows) represent the causal relationships between the concepts20. We combine methods from social science, data science, and network science to conduct an analysis using mental models of coastal residents along an urbanization gradient to better understand the interconnections among urbanization, people’s knowledge of human-environment interactions, and their pro-environmental behavior.
We surveyed residents across eight coastal states in the northeast U.S., including Maine, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Delaware. We used a fuzzy cognitive mapping (FCM) approach21 to elicit mental models of coastal ecosystems with a focus on environmental connectedness, ecosystem health, human wellbeing, climate, and sustainable coasts (see Methods). Here, we propose a concept, Urbanized Knowledge Syndrome (UKS), which represents recurring patterns in urban dwellers’ mental models about natural ecosystems – their internal understanding of how humans and environment interact. Here, syndrome should not be interpreted as a set of medical signs and symptoms which are associated with a particular disease or disorder. These recurring patterns include (1) diminished systems thinking (e.g., complexity of mental models decreases as degree of urban development increases) and (2) the erosion of cognitive diversity (i.e., diversity of mental models among residents decreases as degree of urban development increases). These patterns demonstrate a type of thinking that is simplified to some extent or otherwise limited or focused on fewer social-ecological relationships than exist in reality.
Systems thinking – a holistic view that considers factors and interactions and how they result in a possible outcome – is an important skillset that helps people better understand complex systems and adapt to changes22. Individuals with higher degrees of systems thinking are more likely to consider interdependencies, identify leverage points to intervene within the system and produce desired outcomes23, better anticipate system function and emergence of patterns of behavior24, and avoid unintended consequences18. As such, systems thinking may help coastal residents develop mental models that enable more nuanced reasoning about diverse causal pathways between humans and natural coastal ecosystems25,26,27,28, which may lead to behaviors that are driven by more predominant cognition of complex feedbacks, trade-offs, and reciprocal interdependencies between humans and nature. In contrast, bounded systems thinking (or linear thinking) may lead humans to develop limited cognition of their surrounding world, reduce their ability to accurately and adequately perceive the complexity of the environment they inhabit and interact with22, and thus may give rise to counterproductive behaviors and decisions27,29. For example, a simple causal relationship might be that seawall construction increases coastal protection as a form of structural defense to control shoreline erosion; whereas a more complex relationship might be that seawalls lead to alterations in hydrodynamic processes, which reduces erosion locally and accelerates coastal erosion downstream30, and at the same time, shoreline armoring can also lead to losses of natural coastal habitats and their critical ecosystem functions3.
While cities are beneficial to human development, working as engines of socioeconomic change, cultural transformation, and technological innovation, their psychological influences on people and how these influences drive urban residents’ perceptions and behavior must be noted. Firstly, the salience of ecosystem services is limited for inhabitants of more urbanized areas, as compared to rural areas. Exposure to nature provides multiple opportunities for cognitive development which increases the potential for stewardship of the environment and for a stronger recognition of ecosystem functions13. Urban residents, however, are more routinely exposed to built environment and gray infrastructure, such as armored shorelines and artificial structures along coastlines, as opposed to natural environment, and thus their local experience of, and connection to, ecosystem services can be limited31.
Secondly, urbanization generally comes with complex technology and commerce, allowing individuals to meet their needs quickly and through many choices with less appreciation of, and first hand experience with, provisioning ecosystem services (e.g., food comes from many grocery stores not a farm or garden; fish comes over a counter not across a dock or the end of a spear; and potable water comes from a pipeline not a spring or well). This may cause the development of a wider gap in human perceptions of benefits received from natural ecosystems32, fostering the emergence of societies that are increasingly disconnected and seemingly independent from ecosystem services31.
Finally, residents of urbanized areas may be exposed to a set of social norms, information, and perspectives that encourage anthropocentric values and thinking including human exemptionalism (“the tendency to see human systems as exempt from the constraints of natural environment”33) and human exceptionalism (“the tendency to see humans as biologically unique and discontinuous with the rest of the animal world”34), therefore limiting their understanding of the importance and substantiality of reciprocal interdependencies between humans and natural environment13,34. These urbanization aspects may spark what we call ‘limits to systems thinking’ in the social-ecological realm.
Therefore, we hypothesize (H1) that in more urbanized areas, mental models are predominantly characterized by linear thinking of coastal ecosystems, as opposed to systems thinking, where components are connected mostly by simple causal patterns. This class of mental models is associated with limited cognition of synergies and trade-offs, emergence of global patterns from local relationships, reciprocal interdependencies, and feedback loops between humans and natural ecosystems, which may lead to a gap in residents’ perception of nonlinear complex structures. To test our hypothesis, we analyze the structure of causal relationships using the network structure and graph-theoretic metrics of cognitive maps (i.e., graphical representations of mental models). We use cluster analysis to identify predominant classes of mental models about coastal ecosystems. Distinct clusters of mental models represent archetypal cognitions that individuals develop to perceive human-environment interdependencies13,27. We then use network analyses to measure the complexity of causal structures in cognitive maps and determine the overall degree of systems thinking in each cluster (see Methods). Finally, we investigate the association between urbanization and the degree of systems thinking across those clusters.
The second important feature that helps systems adapt to changes is diversity, ranging from ecosystems35 to economic systems36. There is also evidence that these same relationships between diversity and adaptability hold true for cultural knowledge systems, governance systems, and among diverse communities and social institutions that function more effectively as resilient collectives28,37,38.
In contrast, as cultural homogenization theories explain, survival in cities depends on fitting in and adopting practices that are considered socially normal by the dominant culture39. Although cities are magnets for people from all corners of the world with seemingly more diverse composition of race and ethnicity compared to rural areas40, assimilation of diverse values, beliefs, cultural knowledge, and social norms into a universal, governing culture—sometimes referred to as “cultural colonialism” or “cultural normalization” – is a major component of urban societies41. This cultural normalization among urban dwellers is exacerbated by dominant exposure to the universal language and education system, greater access to the Internet, social media and news outlets, and market-driven policies and global standardizations for laws and finance41.
In addition, an important characteristic of urbanization is the centralization of the population into cities, “where neighborhoods in different regions have similar patterns of roads, residential lots, commercial areas, and aquatic features”42. Such physical and environmental homogenization across urban areas, which is visually evident, is influenced by monocentric land-management and policies, economic pressures for land development and use, engineering necessities, codes and standards, and preferences for particular aesthetics and recreations. Prior studies have shown that this homogenization extends to ecological structure, meaning that across urbanized areas, similar built environment and landscape structures can lead to homogenized ecological characteristics, function, and the range of ecosystem services they can supply42,43.
Here, we argue that homogenization in cultural, physical, and ecological systems also extends to residents’ perceptions and understanding of human-environment interactions. We, therefore, hypothesize (H2) that increased urbanization is associated with more homogenized mental models of coastal ecosystems. To test our second hypothesis, we measure the structural dissimilarity of individuals’ mental models (i.e., cognitive maps) using some of the widely used methods for comparing graphs44. We measure the mean of pairwise cognitive distances (i.e., a quantitative metric that represents the mean of graph dissimilarity between any two individual cognitive maps) and compare this metric across clusters of mental models, and thus, explore the correspondence between urbanization and mental model homogenization (i.e., testing the hypothesis that urbanization is associated with more similar mental models in terms of causal structures represented in cognitive maps) (see Methods).
Source: Ecology - nature.com