Ryther, J. H. Photosynthesis and fish production in the sea. Sci. (80-.) 166, 72–76 (1969).
Google Scholar
Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Sci. (80-.). 315, 1843–1846 (2007).
Google Scholar
Edwards, K. F., Litchman, E. & Klausmeier, C. A. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol. Lett. 16, 56–63 (2013).
Google Scholar
Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).
Google Scholar
Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).
Collins, S., Rost, B. & Rynearson, T. A. Evolutionary potential of marine phytoplankton under ocean acidification. Evol. Appl. 7, 140–155 (2014).
Google Scholar
Rusch, D. B. et al. The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLOS Biol. 5, e77 (2007).
Google Scholar
de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Sci. (80-.). 348, 1261605–1/11 (2015).
Sunagawa, S. et al. Structure and function of the global ocean microbiome. Sci. (80-.) 348, 1–10 (2015).
Google Scholar
Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. 105, 7774–7778 (2008).
Google Scholar
Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).
Google Scholar
Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. PNAS 105, 20344–20349 (2008).
Google Scholar
Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Sci. (80-.) 327, 1509–1511 (2010).
Google Scholar
Mantyla, A. W., Venrick, E. L. & Hayward, T. L. Primary production and chlorophyll relationships, derived from ten year of CalCOFI measurements. Calif. Cooperative Ocean. Fish. Investig. Rep. 36, 159–166 (1995).
Hayward, T. L. & Venrick, E. L. Nearsurface pattern in the California Current: Coupling between physical and biological structure. Deep. Res. Part II Top. Stud. Oceanogr. https://doi.org/10.1016/S0967-0645(98)80010-6 (1998).
Google Scholar
Venrick, E. L. Floral patterns in the California Current: The coastal-offshore boundary zone. J. Mar. Res. 67, 89–111 (2009).
Google Scholar
Powell, J. R. & Ohman, M. D. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 112, 79–90 (2015).
Google Scholar
Taylor, A. G., Landry, M. R., Selph, K. E. & Wokuluk, J. J. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep. Res. Part II Top. Stud. Oceanogr. 112, 117–128 (2015).
Catlett, D. et al. Diagnosing seasonal to multi-decadal phytoplankton group dynamics in a highly productive coastal ecosystem. Prog. Oceanogr. 197, 102637 (2021).
Google Scholar
Lilly, L. E. & Ohman, M. D. CCE IV: El Niño-related zooplankton variability in the southern California Current System. Deep. Res. Part I Oceanogr. Res. Pap. 140, 36–51 (2018).
Google Scholar
Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74 (2006).
Google Scholar
Wang, Z. et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ. Microbiol. 1462–2920.14734. https://doi.org/10.1111/1462-2920.14734 (2019).
Wang, Y. et al. Patterns and processes of free-living and particle-associated bacterioplankton and archaeaplankton communities in a subtropical river-bay system in South China. Limnol. Oceanogr. 65, S161–S179 (2020).
Ibarbalz, F. M. et al. Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 1084–1097. https://doi.org/10.1016/j.cell.2019.10.008 (2019).
Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).
Google Scholar
Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).
Google Scholar
Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep. Res. Part II Top. Stud. Oceanogr. 43, 129–156 (1996).
Google Scholar
Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): A decade-scale look at ocean biology and biogeochemistry Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep. Res. Part II Top. Stud. Oceanogr. 48, 1405–1447 (2015).
Google Scholar
Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).
Zhu, Z. et al. Understanding the blob bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae 67, 36–43 (2017).
Google Scholar
Mcclatchie, S. et al. State of the California Current 2015–16: Comparisons with the 1997–98 El Niño. Calif. Cooperative Ocean. Fish. Investig. Rep. 57, (2016).
Walker, H. J. Jr et al. Unusual occurrences of fishes in the Southern California Current System during the warm water period of 2014–2018. Estuar. Coast. Shelf Sci. 236, 106634 (2020).
Google Scholar
Kahru, M., Jacox, M. G. & Ohman, M. D. CCE1: Decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California Current System during the 2014–2016 northeast Pacific warm anomalies. Deep. Res. Part I Oceanogr. Res. Pap. 140, 4–13 (2018).
Google Scholar
Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
Google Scholar
Calbet, A. & Landry, M. R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49, 51–57 (2004).
Google Scholar
Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).
Google Scholar
Kohonen, T. Exploration of very large databases by self-organizing maps. IEEE Int. Conf. Neural Networks – Conf. Proc. 1, (1997).
Istvánovics, V. Eutrophication of Lakes and Reservoirs. Encycl. Inl. Waters 157–165 https://doi.org/10.1016/B978-012370626-3.00141-1 (2009).
Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull. Oceanogr. Monaco 19, 457–475 (1999).
Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Global Biogeochem. Cycles 14, (2000).
Grover, J. P. Resource Competition in a Variable Environment: Phytoplankton Growing According to Monod’s Model. Am. Nat. 136, 771–789 (1990).
Google Scholar
Benincá, E. et al. Chaos in a long-term experiment with a plankton community. Nature 451, 822–825 (2008).
Google Scholar
Williams, R. G. & Follows, M. J. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. Book (2011).
Lindegren, M., Checkley, D. M., Ohman, M. D., Koslow, J. A. & Goericke, R. Resilience and stability of a pelagic marine ecosystem. Proc. R. Soc. B Biol. Sci. 283, (2016).
Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 1–10 https://doi.org/10.1038/ncomms5299 (2014).
Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity-biodiversity relationship. Nature 416, 427–430 (2002).
Google Scholar
Jacox, M. G., Edwards, C. A., Hazen, E. L. & Bograd, S. J. Coastal Upwelling Revisited: Ekman, Bakun, and Improved Upwelling Indices for the U.S. West Coast. J. Geophys. Res. Ocean. 123, 7332–7350 (2018).
Google Scholar
Zaba, K. D. & Rudnick, D. L. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophys. Res. Lett. 43, 1241–1248 (2016).
Google Scholar
Weber, E. D. et al. State of the California Current 2019–2020: Back to the Future With Marine Heatwaves? Front. Mar. Sci. 8, (2021).
Closset, I. et al. Diatom response to alterations in upwelling and nutrient dynamics associated with climate forcing in the California Current System. Limnol. Oceanogr. 1–16. https://doi.org/10.1002/lno.11705 (2021).
Kenitz, K. M. et al. Environmental drivers of population variability in colony-forming marine diatoms. Limnol. Oceanogr. 65, 2515–2528 (2020).
Google Scholar
Mullin, M. M. Biomasses of large-celled phytoplankton and their relation to the nitricline and grazing in the California current system off Southern California, 1994–1996. Calif. Cooperative Ocean. Fish. Investig. Rep. 39, 117–123 (1998).
Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. PNAS 105, 1965–1970 (2007).
Google Scholar
Grzymski, J. J. & Dussaq, A. M. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 6, 71–80 (2012).
Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Ocean. Acta 1, (1978).
Falkowski, P. G. & Oliver, M. J. Mix and match: How climate selects phytoplankton. Nat. Rev. Microbiol. 5, 813–819 (2007).
Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).
Phoma, B. S. & Makhalanyane, T. P. Depth-dependent variables shape community structure and functionality in the Prince Edward Islands. Microb. Ecol. 81, 396–409 (2021).
Kahru, M. & Mitchell, B. G. Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current. J. Geophys. Res. Ocean. 106, 2517–2529 (2001).
Google Scholar
Barth, A., Walter, R. K., Robbins, I. & Pasulka, A. Seasonal and interannual variability of phytoplankton abundance and community composition on the Central Coast of California. Mar. Ecol. Prog. Ser. 637, (2020).
Powell, J. R. & Ohman, M. D. Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System. Prog. Oceanogr. 134, 77–92 (2015).
Google Scholar
Taylor, A. G. & Landry, M. R. Phytoplankton biomass and size structure across trophic gradients in the southern California Current and adjacent ocean ecosystems. Mar. Ecol. Prog. Ser. 592, 1–17 (2018).
Google Scholar
Dutkiewicz, S., Follows, M. J. & Bragg, J. G. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, 1–15 (2009).
Google Scholar
D’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. & Lévy, M. Fluid dynamical niches of phytoplankton types. Proc. Natl Acad. Sci. U. S. A. 107, 18366–18370 (2010).
Google Scholar
Clayton, S., Dutkiewicz, S., Jahn, O. & Follows, M. J. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol. Oceanogr. Fluids Environ. 3, 182–197 (2013).
Google Scholar
Moisan, T. A., Rufty, K. M., Moisan, J. R. & Linkswiler, M. A. Satellite observations of phytoplankton functional type spatial distributions, phenology, diversity, and ecotones. Front. Mar. Sci. 4, 1–24 (2017).
Google Scholar
Combes, V. et al. Cross-shore transport variability in the California Current: Ekman upwelling vs. eddy dynamics. Prog. Oceanogr. 109, 78–89 (2013).
Google Scholar
Chenillat, F., Rivière, P., Capet, X., Franks, P. J. S. & Blanke, B. California coastal upwelling onset variability: cross-shore and bottom-up propagation in the planktonic ecosystem. PLoS ONE 8, (2013).
Chenillat, F., Franks, P. J. S. & Combes, V. Biogeochemical properties of eddies in the California Current System. Geophys. Res. Lett. 43, 5812–5820 (2016).
Google Scholar
Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57, 554–566 (2012).
Google Scholar
Wells, B. K. et al. State of the California Current 2016–17: Still anything but ‘normal’ in the north. Calif. Cooperative Ocean. Fish. Investig. Rep. 58 (2017).
Thompson, A. R. et al. State of the California Current 2017–18: Still not quite normal in the north and getting interesting in the south. Calif. Cooperative Ocean. Fish. Investig. Rep. 59 (2018).
Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).
Bograd, S. J., Schroeder, I. D. & Jacox, M. G. A water mass history of the Southern California current system. Geophys. Res. Lett. 46, 6690–6698 (2019).
Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18 (2016).
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 4, (2009).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 17, (2011).
Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W. & A, A. J. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6 (2018).
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12 (2011).
Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35 (2007).
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41 (2013).
McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 10 (2014).
Gloor, G. B., Wu, J. R., Pawlowsky-Glahn, V. & Egozcue, J. J. It’s all relative: analyzing microbiome data as compositions. Ann. Epidemiol. 26 (2016).
Cameron, E. S., Schmidt, P. J., Tremblay, B. J. M., Emelko, M. B. & Müller, K. M. To rarefy or not to rarefy: Enhancing microbial community analysis through next-generation sequencing. bioRxiv. https://doi.org/10.1101/2020.09.09.290049 (2020).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. (2020).
Bowman, J. S., Amaral-zettler, L. A., Rich, J. J., Luria, C. M. & Ducklow, H. W. Bacterial community segmentation facilitates the prediction of ecosystem function along the coast of the western Antarctic Peninsula. Nat. Publ. Gr. 11, 1460–1471 (2017).
Boelaert, J., Bendhaiba, L., Olteanu, M. & Villa-Vialaneix, N. SOMbrero: An R package for numeric and non-numeric self-organizing maps. Adv. Intell. Syst. Comput 295, 219–228 (2014).
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
Google Scholar
James, C. C. et al. Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region. https://doi.org/10.5281/zenodo.6359865 (2022).
Legendre, P. & Legendre, L. Numerical ecology (Elsevier, 2012).
Source: Ecology - nature.com