in

MALDI mass spectrometry imaging workflow for the aquatic model organisms Danio rerio and Daphnia magna

  • (ECHA), E. C. A. Know more about the effects of the chemicals we use in Europe (ECHA/PR/16/01). https://echa.europa.eu/de/-/know-more-about-the-effects-of-the-chemicals-we-use-in-europe (2016).

  • Liu, W. J., Nie, H. X., Liang, D. P., Bai, Y. & Liu, H. W. Phospholipid imaging of zebrafish exposed to fipronil using atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry. Talanta https://doi.org/10.1016/j.talanta.2019.120357 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sparvero, L. J. et al. Mapping of phospholipids by MALDI imaging (MALDI-MSI): Realities and expectations. Chem. Phys. Lipid. 165, 545–562. https://doi.org/10.1016/j.chemphyslip.2012.06.001 (2012).

    CAS 
    Article 

    Google Scholar 

  • Koizumi, S. et al. Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience 168(1), 219–225. https://doi.org/10.1016/j.neuroscience.2010.03.056 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hankin, J. A. et al. MALDI mass spectrometric imaging of lipids in rat brain injury models. J. Am. Soc. Mass Spectrom. 22(6), 1014–1021. https://doi.org/10.1007/s13361-011-0122-z (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, C. et al. MALDI-MS imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol s-induced nephrotoxicity. Anal. Chem. 90(5), 3196–3204. https://doi.org/10.1021/acs.analchem.7b04540 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Barbacci, D. C. et al. Mass spectrometric imaging of ceramide biomarkers tracks therapeutic response in traumatic brain injury. ACS Chem. Neurosci. 8(10), 2266–2274. https://doi.org/10.1021/acschemneuro.7b00189 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rompp, A. et al. Histology by mass spectrometry: Label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew. Chem. Int. Ed. 49, 3834–3838. https://doi.org/10.1002/anie.200905559 (2010).

    CAS 
    Article 

    Google Scholar 

  • Zemski Berry, K. A. et al. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 111, 6491–6512. https://doi.org/10.1021/cr200280p (2011).

    CAS 
    Article 

    Google Scholar 

  • Cornett, D. S., Reyzer, M. L., Chaurand, P. & Caprioli, R. M. MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems. Nat. Methods 4, 828–833. https://doi.org/10.1038/nmeth1094 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Römpp, A. & Spengler, B. Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 139, 759–783. https://doi.org/10.1007/s00418-013-1097-6 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monroe, E. B. et al. SIMS and MALDI MS imaging of the spinal cord. Proteomics 8(18), 3746-3754. https://doi.org/10.1002/pmic.200800127 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaurand, P., Cornett, D. S., Angel, P. M. & Caprioli, R. M. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol. Cell. Proteom. https://doi.org/10.1074/mcp.O110.004259 (2011).

    Article 

    Google Scholar 

  • Lee, H.-B. & Peart, T. E. Determination of bisphenol A in sewage effluent and sludge by solid-phase and supercritical fluid extraction and gas chromatography/mass spectrometry. J. AOAC Int. 83, 290–298. https://doi.org/10.1093/jaoac/83.2.290 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Desbenoit, N., Walch, A., Spengler, B., Brunelle, A. & Römpp, A. Correlative mass spectrometry imaging, applying time-of-flight secondary ion mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization to a single tissue section. Rapid Commun. Mass Spectrometry 32, 159–166. https://doi.org/10.1002/rcm.8022 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Meding, S. et al. Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J. Proteome Res. 11, 1996–2003. https://doi.org/10.1021/pr200784p (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ritschar, S. et al. Classification of target tissues of Eisenia fetida using sequential multimodal chemical analysis and machine learning. Histochem. Cell Biol. https://doi.org/10.1007/s00418-021-02037-1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altshuler, I. et al. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integr. Comp. Biol. 51(4), 623–633. https://doi.org/10.1093/icb/icr103 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bambino, K. & Chu, J. in Zebrafish at the Interface of Development and Disease Research Vol. 124 Current Topics in Developmental Biology (ed K. C. Sadler) 331–367 (2017).

  • Seda, J. & Petrusek, A. Daphnia as a model organism in limnology and aquatic biology: Introductory remarks. J. Limnol. 70, 337–344. https://doi.org/10.4081/jlimnol.2011.337 (2011).

    Article 

    Google Scholar 

  • de Souza Anselmo, C., Sardela, V. F., de Sousa, V. P. & Pereira, H. M. G. Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans? Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 212, 34–46. https://doi.org/10.1016/j.cbpc.2018.06.005 (2018).

    CAS 
    Article 

    Google Scholar 

  • Panula, P. et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis. 40, 46–57. https://doi.org/10.1016/j.nbd.2010.05.010 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Korn, H. & Faber, D. S. The Mauthner cell half a century later: A neurobiological model for decision-making?. Neuron 47, 13–28. https://doi.org/10.1016/j.neuron.2005.05.019 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schirmer, E., Schuster, S. & Machnik, P. Bisphenols exert detrimental effects on neuronal signaling in mature vertebrate brains. Commun. Biol. https://doi.org/10.1038/s42003-021-01966-w (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flößner, D. Book review: Cladocera: The genus Daphnia (including Daphniopsis). Int. Rev. Hydrobiol. 90, 637. https://doi.org/10.1002/iroh.200590003 (2005).

    Article 

    Google Scholar 

  • OECD. Test No. 211: Daphnia magna Reproduction Test. (2012).

  • Muyssen, B. T. A. & Janssen, C. R. Multigeneration zinc acclimation and tolerance in Daphnia magna: Implications for water-quality guidelines and ecological risk assessment. Environ. Toxicol. Chem. 20, 2053–2060. https://doi.org/10.1002/etc.5620200926 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Blewett, T. A. et al. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna. Environ. Sci. Technol. 51, 3032–3039. https://doi.org/10.1021/acs.est.6b05179 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yang, J. H., Kim, H. J., Lee, S. M., Kim, B. M. & Seo, Y. R. Cadmium-induced biomarkers discovery and comparative network analysis in Daphnia magna. Mol. Cell. Toxicol. 13, 327–336. https://doi.org/10.1007/s13273-017-0036-3 (2017).

    CAS 
    Article 

    Google Scholar 

  • Ferain, A. et al. Body lipid composition modulates acute cadmium toxicity in Daphnia magna adults and juveniles. Chemosphere 205, 328–338. https://doi.org/10.1016/j.chemosphere.2018.04.091 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ritschar, S., Narayana, V. K. B., Rabus, M. & Laforsch, C. Uncovering the chemistry behind inducible morphological defences in the crustacean Daphniamagna via micro-Raman spectroscopy. Sci. Rep. 10(1), 22408. https://doi.org/10.1038/s41598-020-79755-4 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Machnik, P., Schirmer, E., Glück, L. & Schuster, S. Recordings in an integrating central neuron provide a quick way for identifying appropriate anaesthetic use in fish. Sci. Rep. 8, 17541. https://doi.org/10.1038/s41598-018-36130-8 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luzio, A. et al. Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. Aquat. Toxicol. 128, 183–189. https://doi.org/10.1016/j.aquatox.2012.12.018 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Macirella, R. & Brunelli, E. Morphofunctional alterations in zebrafish (Danio rerio) gills after exposure to mercury chloride. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18040824 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mansouri, B. & Johari, S. A. Effects of short-term exposure to sublethal concentrations of silver nanoparticles on histopathology and electron microscope ultrastructure of zebrafish (Danio rerio) gills. IJT 10, 15–20. https://doi.org/10.32598/IJT.10.1.60.4 (2016).

    CAS 
    Article 

    Google Scholar 

  • Perez, C. J., Tata, A., de Campos, M. L., Peng, C. & Ifa, D. R. Monitoring toxic ionic liquids in zebrafish (Danio rerio) with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). J. Am. Soc. Mass Spectrom. 28, 1136–1148. https://doi.org/10.1007/s13361-016-1515-9 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stutts, W. L. et al. Methods for cryosectioning and mass spectrometry imaging of whole-body zebrafish. J. Am. Soc. Mass Spectrom. 31, 768–772. https://doi.org/10.1021/jasms.9b00097 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Purves, D. & Williams, S. M. Neuroscience. 2nd edition. Vol. Chapter 11, Vision: The Eye (Sinauer Associates, 2001).

    Google Scholar 

  • Strungaru, S. A. et al. Toxicity and chronic effects of deltamethrin exposure on zebrafish (Danio rerio) as a reference model for freshwater fish community. Ecotoxicol. Environ. Saf. 171, 854–862. https://doi.org/10.1016/j.ecoenv.2019.01.057 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mishra, A. & Devi, Y. Histopathological alterations in the brain (optic tectum) of the fresh water teleost Channa punctatus in response to acute and subchronic exposure to the pesticide Chlorpyrifos. Acta Histochem. 116, 176–181. https://doi.org/10.1016/j.acthis.2013.07.001 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jia, W., Mao, L., Zhang, L., Zhang, Y. & Jiang, H. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio). Chemosphere 207, 573–580. https://doi.org/10.1016/j.chemosphere.2018.05.138 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Seyoum, A., Pradhan, A., Jass, J. & Olsson, P. E. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139682 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Scanlan, L. D. et al. Gene transcription, metabolite and lipid profiling in eco-indicator Daphnia magna indicate diverse mechanisms of toxicity by legacy and emerging flame-retardants. Environ. Sci. Technol. 49, 7400–7410. https://doi.org/10.1021/acs.est.5b00977 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinlaan, M. et al. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Res. 45, 179–190. https://doi.org/10.1016/j.watres.2010.08.026 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Abe, T., Saito, H., Niikura, Y., Shigeoka, T. & Nakano, Y. Embryonic development assay with Daphnia magna: Application to toxicity of aniline derivatives. Chemosphere 45, 487–495. https://doi.org/10.1016/s0045-6535(01)00049-2 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sengupta, N., Gerard, P. D. & Baldwin, W. S. Perturbations in polar lipids, starvation survival and reproduction following exposure to unsaturated fatty acids or environmental toxicants in Daphnia magna. Chemosphere 144, 2302–2311. https://doi.org/10.1016/j.chemosphere.2015.11.015 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Huber, K. et al. Approaching cellular resolution and reliable identification in mass spectrometry imaging of tryptic peptides. Anal. Bioanal. Chem. 410, 5825–5837. https://doi.org/10.1007/s00216-018-1199-z (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189. https://doi.org/10.1016/j.stem.2007.11.002 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagayoshi, S. et al. Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135, 159–169. https://doi.org/10.1242/dev.009050 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Perciedu Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Exp. Physiol. 105, 1459–1466. https://doi.org/10.1113/EP088870 (2020).

    Article 

    Google Scholar 

  • Elendt, B. P. Selenium deficiency in Crustacea. Protoplasma 154, 25–33. https://doi.org/10.1007/BF01349532 (1990).

    CAS 
    Article 

    Google Scholar 

  • Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532. https://doi.org/10.1093/nar/gkl838 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Race, A. M., Styles, I. B. & Bunch, J. Inclusive sharing of mass spectrometry imaging data requires a converter for all. J. Proteom. 75, 5111–5112. https://doi.org/10.1016/j.jprot.2012.05.035 (2012).

    CAS 
    Article 

    Google Scholar 

  • Robichaud, G., Garrard, K. P., Barry, J. A. & Muddiman, D. C. MSiReader: An open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass Spectrom. 24, 718–721. https://doi.org/10.1007/s13361-013-0607-z (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region

    Seasonal dynamics of ammonia-oxidizing bacteria but not archaea influence soil nitrogen cycling in a semi-arid agricultural soil