Schimel, J. P., Bennett, J. & Fierer, N. Microbial community composition and soil nitrogen cycling: is there really a connection? In Biological Diversity and Function in Soils Ecological Reviews (eds Bardgett, R. et al.) 171–188 (Cambridge University Press, 2005).
Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).
Google Scholar
Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529 (2001).
Google Scholar
Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
Google Scholar
Shi, X. et al. Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biol. Biochem. 126, 114–122 (2018).
Google Scholar
van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).
Google Scholar
Wang, X. et al. Comammox bacterial abundance, activity, and contribution in agricultural rhizosphere soils. Sci. Total Environ. 727, 138563 (2020).
Google Scholar
Wang, F., Liang, X., Ma, S., Liu, L. & Wang, J. Ammonia-oxidizing archaea are dominant over comammox in soil nitrification under long-term nitrogen fertilization. J. Soils Sediments 21, 1800–1814 (2021).
Google Scholar
Rotthauwe, J.-H., Witzel, K.-P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
Google Scholar
Spang, A. et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18, 331–340 (2010).
Google Scholar
Schleper, C. & Nicol, G. W. Ammonia-oxidising archaea—Physiology, ecology and evolution. Adv. Microb. Physiol. 57, 1–41 (2010).
Google Scholar
Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531 (2012).
Google Scholar
Amin, S. A. et al. Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment. Limnol. Oceanogr. 58, 2037–2045 (2013).
Google Scholar
Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).
Google Scholar
Gubry-Rangin, C. et al. Niche specialization of terrestrial archaeal ammonia oxidizers. Proc. Natl. Acad. Sci. U.S.A. 108, 21206–21211 (2011).
Google Scholar
Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., Prosser, J. I. & Nicol, G. W. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. U.S.A. 108, 15892–15897 (2011).
Google Scholar
Banning, N. C., Maccarone, L. D., Fisk, L. M. & Murphy, D. V. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci. Rep. 5, 11146 (2015).
Google Scholar
Di, H. J. et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol. Ecol. 72, 386–394 (2010).
Google Scholar
Wang, J., Wang, J., Rhodes, G., He, J. Z. & Ge, Y. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. Sci. Total Environ. 668, 224–233 (2019).
Google Scholar
Ouyang, Y., Evans, S. E., Friesen, M. L. & Tiemann, L. K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 127, 71–78 (2018).
Google Scholar
Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071 (2011).
Google Scholar
Wardle, D. A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 30, 1627–1637 (1998).
Google Scholar
Adair, K. L. & Schwartz, E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb. Ecol. 56, 420–426 (2008).
Google Scholar
Taylor, A. E., Zeglin, L. H., Wanzek, T. A., Myrold, D. D. & Bottomley, P. J. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J. 6, 2024–2032 (2012).
Google Scholar
Hayatsu, M., Katsuyama, C. & Tago, K. Overview of recent researches on nitrifying microorganisms in soil. Soil Sci. Plant Nutr. 67, 1–14 (2021).
Sher, Y., Zaady, E. & Nejidat, A. Spatial and temporal diversity and abundance of ammonia oxidizers in semi-arid and arid soils: Indications for a differential seasonal effect on archaeal and bacterial ammonia oxidizers. FEMS Microbiol. Ecol 86, 544–556 (2013).
Google Scholar
Stopnišek, N. et al. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl. Environ. Microbiol. 76, 7626–7634 (2010).
Google Scholar
Habteselassie, M. Y., Xu, L. & Norton, J. M. Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Front. Microbiol. 4, 326 (2013).
Google Scholar
Wang, C. et al. Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Glob. Change Biol. 22, 2963–2978 (2016).
Wessén, E., Nyberg, K., Jansson, J. K. & Hallin, S. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl. Soil Ecol. 45, 193–200 (2010).
Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).
Google Scholar
Harrison, P. & Pearce, F. AAAS Atlas of Population & Environment 204 (University of California Press, 2000).
Reynolds, J. F., Maestre, F. T., Kemp, P. R., Smith, D. M. S. & Lambin, E. F. Natural and human dimensions of land degradation in drylands: Causes and consequences. In Terrestrial Ecosystems in a Changing World Global Change—The IGBP Series (eds Canadell, J. G. et al.) 247–258 (Springer, 2007).
McArthur, W. M. Reference Soils of South-Western Australia 2nd edn. (Department of Agriculture, 2004).
Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).
Google Scholar
Barton, L., Hoyle, F. C., Stefanova, K. T. & Murphy, D. V. Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate. Agric. Ecosyst. Environ. 231, 320–330 (2016).
Google Scholar
Gubry-Rangin, C., Nicol, G. W. & Prosser, J. I. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol. Ecol. 74, 566–574 (2010).
Google Scholar
Gleeson, D. B. et al. Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol. Biochem. 42, 1888–1891 (2010).
Google Scholar
O’Sullivan, C. A., Wakelin, S. A., Fillery, I. R. P. & Roper, M. M. Factors affecting ammonia-oxidising microorganisms and potential nitrification rates in southern Australian agricultural soils. Soil Res. 51, 240–252 (2013).
Zhang, L.-M., Hu, H.-W., Shen, J.-P. & He, J.-Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045 (2012).
Google Scholar
Wang, F. et al. Responses of soil ammonia-oxidizing bacteria and archaea to short-term warming and nitrogen input in a semi-arid grassland on the Loess Plateau. Eur. J. Soil Biol. 102, 103267 (2021).
Google Scholar
Bolland, M. D. A. & Brennan, R. F. Phosphorus, copper and zinc requirements of no-till wheat crops and methods of collecting soil samples for soil testing. Aust. J. Exp. Agric. 46, 1051–1059 (2006).
Google Scholar
Gilkes, B., Lee, S. & Singh, B. The imprinting of aridity upon a lateritic landscape: An illustration from southwestern Australia. C. R. Geosci. 335, 1207–1218 (2003).
Hoyle, F. C. & Murphy, D. V. Influence of organic residues and soil incorporation on temporal measures of microbial biomass and plant available nitrogen. Plant Soil 347, 53–64 (2011).
Google Scholar
Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 4, 25–51 (1973).
Petersen, D. G. et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol. 14, 993–1008 (2012).
Google Scholar
Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).
Google Scholar
Murphy, D. V., Sparling, G. P., Fillery, I. R. P., McNeill, A. M. & Braunberger, P. Mineralisation of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil. Aust. J. Soil Res. 36, 231–246 (1998).
Anderson, G. C., Fillery, I. R. P., Dunin, F. X., Dolling, P. J. & Asseng, S. Nitrogen and water flows under pasture–wheat and lupin–wheat rotations in deep sands in Western Australia 2. Drainage and nitrate leaching. Aust. J. Agric. Res. 49, 345–361 (1998).
Google Scholar
Nicholls, N. Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958–2007. Clim. Dyn. 34, 835–845 (2010).
Delworth, T. L. & Zeng, F. Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci. 7, 583 (2014).
Google Scholar
Alexander, L. V. et al. Trends in Australia’s climate means and extremes: A global context. Aust. Meteorol. Mag. 56, 1–18 (2007).
Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).
Google Scholar
Isbell, R. F. The Australian Soil Classification 2nd edn. (CSIRO Publishing, 2002).
IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007 203 (FAO, 2007).
Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
Google Scholar
Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).
Google Scholar
Krom, M. D. Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105, 305–316 (1980).
Google Scholar
Kamphake, L. J., Hannah, S. A. & Cohen, J. M. Automated analysis for nitrate by hydrazine reduction. Water Res. 1, 205–216 (1967).
Google Scholar
Keeney, D. R. & Bremner, J. M. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron. J. 58, 498–503 (1966).
Google Scholar
Waring, S. A. & Bremner, J. M. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201, 951–952 (1964).
Google Scholar
Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).
Google Scholar
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. U.S.A. 102, 14683–14688 (2005).
Google Scholar
Barton, L., Gleeson, D. B., Maccarone, L. D., Zúñiga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils? Soil Biol. Biochem. 62, 28–35 (2013).
Google Scholar
Akaike, H. Likelihood of a model and information criteria. J. Econom. 16, 3–14 (1981).
Google Scholar
Cresswell, H. P. & Hamilton, G. J. Bulk density and pore space relations. In Soil Physical Measurement and Interpretation for Land Evaluation (eds McKenzie, N. et al.) 35–58 (CSIRO Publishing, 2002).
Rayment, G. E. & Lyons, D. J. Soil Chemical Methods—Australasia 495 (CSIRO Publishing, 2011).
Source: Ecology - nature.com