Chang, C. & HilleRisLambers, J. Integrating succession and community assembly perspectives. F1000Research 5, 1–10 (2016).
Google Scholar
Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).
Google Scholar
Kadowaki, K., Nishijima, S., Kéfi, S., Kameda, K. O. & Sasaki, T. Merging community assembly into the regime-shift approach for informing ecological restoration. Ecol. Indic. 85, 991–998 (2018).
Google Scholar
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
Google Scholar
Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).
Google Scholar
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Google Scholar
Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).
Google Scholar
Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).
Google Scholar
Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl Acad. Sci. USA 117, 28140–28149 (2020).
Google Scholar
Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).
Google Scholar
Kaufmann, R. Invertebrate succession on an alpine glacier foreland. Ecology 82, 2261–2278 (2001).
Google Scholar
Blaalid, R. et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol. Ecol. 21, 1897–1908 (2012).
Google Scholar
Fenton, N. J. & Bergeron, Y. Stochastic processes dominate during boreal bryophyte community assembly. Ecology 94, 1993–2006 (2013).
Google Scholar
Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).
Google Scholar
Måren, I. E., Kapfer, J., Aarrestad, P. A., Grytnes, J. A. & Vandvik, V. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient. Ecology 99, 148–157 (2018).
Google Scholar
Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).
Google Scholar
Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).
Google Scholar
Ohlmann, M. et al. Mapping the imprint of biotic interactions on β-diversity. Ecol. Lett. 21, 1660–1669 (2018).
Google Scholar
Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1–10 (2019).
Google Scholar
Howard, M. M., Kao-Kniffin, J. & Kessler, A. Shifts in plant–microbe interactions over community succession and their effects on plant resistance to herbivores. N. Phytol. 226, 1144–1157 (2020).
Google Scholar
Lepš, J., Rejmánek, M., Leps, J. & Rejmanek, M. Convergence or divergence: what should we expect from vegetation succession? Oikos 62, 261–264 (1991).
Google Scholar
Fukami, T., Bezemer, T. M., Mortimer, S. R. & Van Der Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).
Google Scholar
Brown, S. P. & Jumpponen, A. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol. Ecol. 23, 481–497 (2014).
Google Scholar
Castle, S. C. et al. Biogeochemical drivers of microbial community convergence across actively retreating glaciers. Soil Biol. Biochem. 101, 74–84 (2016).
Google Scholar
Chang, C. C. et al. Testing conceptual models of early plant succession across a disturbance gradient. J. Ecol. 107, 517–530 (2019).
Google Scholar
Junker, R. R. et al. Ödenwinkel: an Alpine platform for observational and experimental research on the emergence of multidiversity and ecosystem complexity. Web Ecol. 20, 95–106 (2020).
Google Scholar
Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).
Google Scholar
Lindeløv, J. K. mcp: an R package for regression With multiple change points. J. Stat. Softw. https://doi.org/10.31219/osf.io/fzqxv (2020).
Google Scholar
Ohler, L. M., Lechleitner, M. & Junker, R. R. Microclimatic effects on alpine plant communities and flower-visitor interactions. Sci. Rep. 10, 1–9 (2020).
Google Scholar
Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).
Google Scholar
Lowe, W. H. & McPeek, M. A. Is dispersal neutral? Trends Ecol. Evol. 29, 444–450 (2014).
Google Scholar
Legendre, P., Borcard, D. & Peres-Neto, P. R. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75, 435–450 (2005).
Google Scholar
Ranta, E. et al. Detecting compensatory dynamics in competitive communities under environmental forcing. Oikos 117, 1907–1911 (2008).
Google Scholar
Houlahan, J. E. et al. The utility of covariances: a response to Ranta et al. Oikos 117, 1912–1913 (2008).
Google Scholar
Tscherko, D., Rustemeier, J., Richter, A., Wanek, W. & Kandeler, E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur. J. Soil Sci. 54, 685–696 (2003).
Google Scholar
Raffl, C., Mallaun, M., Mayer, R. & Erschbamer, B. Vegetation succession pattern and diversity changes in a Glacier Valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 38, 421–428 (2006).
Google Scholar
Schütte, U. M. E. et al. Bacterial diversity in a glacier foreland of the high Arctic. Mol. Ecol. 19, 54–66 (2010).
Google Scholar
Dong, K. et al. Soil fungal community development in a high Arctic glacier foreland follows a directional replacement model, with a mid-successional diversity maximum. Sci. Rep. 6, 1–9 (2016).
Google Scholar
Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).
Google Scholar
Vellend, M. Effects of diversity on diversity: consequences of competition and facilitation. Oikos 117, 1075–1085 (2008).
Google Scholar
Rottstock, T., Joshi, J., Kummer, V. & Fischer, M. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95, 1907–1917 (2014).
Google Scholar
Baudy, P. et al. Fungal–fungal and fungal–bacterial interactions in aquatic decomposer communities: bacteria promote fungal diversity. Ecology 102, 1–16 (2021).
Google Scholar
Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).
Google Scholar
Bokhorst, S. & Wardle, D. A. Snow fungi as a food source for micro-arthropods. Eur. J. Soil Biol. 60, 77–80 (2014).
Google Scholar
Hågvar, S. et al. Ecosystem birth near melting glaciers: a review on the pioneer role of ground-dwelling arthropods. Insects 11, 1–35 (2020).
Google Scholar
Wardle, D. A. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9, 870–886 (2006).
Google Scholar
Sabatini, M. A. & Innocenti, G. Functional relationships between Collembola and plant pathogenic fungi of agricultural soils. Pedobiologia (Jena.) 44, 467–475 (2000).
Google Scholar
Klironomos, J. N. & Kendrick, W. B. Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol. Fertil. Soils 21, 43–52 (1996).
Google Scholar
Klironomos, J. N., Widden, P. & Deslandes, I. Feeding preferences of the collembolan Folsomia candida in relation to microfungal successions on decaying litter. Soil Biol. Biochem. 24, 685–692 (1992).
Google Scholar
Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).
Google Scholar
Arróniz-Crespo, M. et al. Bryophyte-cyanobacteria associations during primary succession in recently deglaciated areas of Tierra del Fuego (Chile). PLoS One 9, 15–17 (2014).
Google Scholar
Jean, M. et al. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. N. Phytol. 227, 1335–1349 (2020).
Google Scholar
Jean, M., Alexander, H. D., Mack, M. C. & Johnstone, J. F. Patterns of bryophyte succession in a 160-year chronosequence in deciduous and coniferous forests of boreal Alaska. Can. J. Res. 47, 1021–1032 (2017).
Google Scholar
Blanchet, F. G., Cazelles, K. & Gravel, D. Co‐occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).
Google Scholar
Fukami, T. & Nakajima, M. Complex plant-soil interactions enhance plant species diversity by delaying community convergence. J. Ecol. 101, 316–324 (2013).
Google Scholar
Martínez-García, L. B., Richardson, S. J., Tylianakis, J. M., Peltzer, D. A. & Dickie, I. A. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. N. Phytol. 205, 1565–1576 (2015).
Google Scholar
Paulson, J. metagenomeSeq: statistical analysis for sparse high-throughput sequencing. Bioconductor.Jp https://github.com/nosson/metagenomeSeq/ (2014).
Francesco Ficetola, G. & Denoël, M. Ecological thresholds: an assessment of methods to identify abrupt changes in species-habitat relationships. Ecography 32, 1075–1084 (2009).
Google Scholar
Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).
Google Scholar
Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R. & Hooten, M. B. A guide to Bayesian model checking for ecologists. Ecol. Monogr. 88, 526–542 (2018).
Google Scholar
Hanusch, M., Ortiz, E. M., Patiño, J. & Schaefer, H. Biogeography and integrative taxonomy of epipterygium (Mniaceae, Bryophyta). Taxon 69, 1150–1171 (2020).
Google Scholar
Oksanen, J. et al. vegan: community ecology package. Github https://github.com/vegandevs/vegan (2019).
Baker, S. C. & Barmuta, L. A. Evaluating spatial autocorrelation and depletion in pitfall-trap studies of environmental gradients. J. Insect Conserv. 10, 269–276 (2006).
Google Scholar
Pickett, S. T. A. in Long-Term Studies in Ecology (ed. Likens, G. E.) 110–135 (Springer, 1989).
Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. Test 27, 716–748 (2018).
Google Scholar
Hanusch, M., He, X., Ruiz-Hernández, V. & Junker, R. R. Successional generation of functional multidiversity and ecosystem complexity—a dataset from the Ödenwinkel research platform. Mendeley Data. https://doi.org/10.17632/xkv89tbftc.1 (2022).
Hanusch, M., He, X., Ruiz-Hernández, V. & Junker, R. R. Supporting dataset and code: succession comprises a sequence of threshold-induced community assembly processes towards multidiversity. Mendeley Data. https://doi.org/10.17632/dr6d3728xb.1 (2022).
Source: Ecology - nature.com