in

Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity

  • Chang, C. & HilleRisLambers, J. Integrating succession and community assembly perspectives. F1000Research 5, 1–10 (2016).

    Article 

    Google Scholar 

  • Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Kadowaki, K., Nishijima, S., Kéfi, S., Kameda, K. O. & Sasaki, T. Merging community assembly into the regime-shift approach for informing ecological restoration. Ecol. Indic. 85, 991–998 (2018).

    Article 

    Google Scholar 

  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl Acad. Sci. USA 117, 28140–28149 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).

    Article 

    Google Scholar 

  • Kaufmann, R. Invertebrate succession on an alpine glacier foreland. Ecology 82, 2261–2278 (2001).

    Article 

    Google Scholar 

  • Blaalid, R. et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol. Ecol. 21, 1897–1908 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Fenton, N. J. & Bergeron, Y. Stochastic processes dominate during boreal bryophyte community assembly. Ecology 94, 1993–2006 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Måren, I. E., Kapfer, J., Aarrestad, P. A., Grytnes, J. A. & Vandvik, V. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient. Ecology 99, 148–157 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ohlmann, M. et al. Mapping the imprint of biotic interactions on β-diversity. Ecol. Lett. 21, 1660–1669 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1–10 (2019).

    Article 
    CAS 

    Google Scholar 

  • Howard, M. M., Kao-Kniffin, J. & Kessler, A. Shifts in plant–microbe interactions over community succession and their effects on plant resistance to herbivores. N. Phytol. 226, 1144–1157 (2020).

    Article 

    Google Scholar 

  • Lepš, J., Rejmánek, M., Leps, J. & Rejmanek, M. Convergence or divergence: what should we expect from vegetation succession? Oikos 62, 261–264 (1991).

    Article 

    Google Scholar 

  • Fukami, T., Bezemer, T. M., Mortimer, S. R. & Van Der Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).

    Article 

    Google Scholar 

  • Brown, S. P. & Jumpponen, A. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol. Ecol. 23, 481–497 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Castle, S. C. et al. Biogeochemical drivers of microbial community convergence across actively retreating glaciers. Soil Biol. Biochem. 101, 74–84 (2016).

    CAS 
    Article 

    Google Scholar 

  • Chang, C. C. et al. Testing conceptual models of early plant succession across a disturbance gradient. J. Ecol. 107, 517–530 (2019).

    Article 

    Google Scholar 

  • Junker, R. R. et al. Ödenwinkel: an Alpine platform for observational and experimental research on the emergence of multidiversity and ecosystem complexity. Web Ecol. 20, 95–106 (2020).

    Article 

    Google Scholar 

  • Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).

    Article 

    Google Scholar 

  • Lindeløv, J. K. mcp: an R package for regression With multiple change points. J. Stat. Softw. https://doi.org/10.31219/osf.io/fzqxv (2020).

    Article 

    Google Scholar 

  • Ohler, L. M., Lechleitner, M. & Junker, R. R. Microclimatic effects on alpine plant communities and flower-visitor interactions. Sci. Rep. 10, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Lowe, W. H. & McPeek, M. A. Is dispersal neutral? Trends Ecol. Evol. 29, 444–450 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Legendre, P., Borcard, D. & Peres-Neto, P. R. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75, 435–450 (2005).

    Article 

    Google Scholar 

  • Ranta, E. et al. Detecting compensatory dynamics in competitive communities under environmental forcing. Oikos 117, 1907–1911 (2008).

    Article 

    Google Scholar 

  • Houlahan, J. E. et al. The utility of covariances: a response to Ranta et al. Oikos 117, 1912–1913 (2008).

    Article 

    Google Scholar 

  • Tscherko, D., Rustemeier, J., Richter, A., Wanek, W. & Kandeler, E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur. J. Soil Sci. 54, 685–696 (2003).

    Article 

    Google Scholar 

  • Raffl, C., Mallaun, M., Mayer, R. & Erschbamer, B. Vegetation succession pattern and diversity changes in a Glacier Valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 38, 421–428 (2006).

    Article 

    Google Scholar 

  • Schütte, U. M. E. et al. Bacterial diversity in a glacier foreland of the high Arctic. Mol. Ecol. 19, 54–66 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Dong, K. et al. Soil fungal community development in a high Arctic glacier foreland follows a directional replacement model, with a mid-successional diversity maximum. Sci. Rep. 6, 1–9 (2016).

    Article 
    CAS 

    Google Scholar 

  • Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vellend, M. Effects of diversity on diversity: consequences of competition and facilitation. Oikos 117, 1075–1085 (2008).

    Article 

    Google Scholar 

  • Rottstock, T., Joshi, J., Kummer, V. & Fischer, M. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95, 1907–1917 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Baudy, P. et al. Fungal–fungal and fungal–bacterial interactions in aquatic decomposer communities: bacteria promote fungal diversity. Ecology 102, 1–16 (2021).

    Article 

    Google Scholar 

  • Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bokhorst, S. & Wardle, D. A. Snow fungi as a food source for micro-arthropods. Eur. J. Soil Biol. 60, 77–80 (2014).

    Article 

    Google Scholar 

  • Hågvar, S. et al. Ecosystem birth near melting glaciers: a review on the pioneer role of ground-dwelling arthropods. Insects 11, 1–35 (2020).

    Article 

    Google Scholar 

  • Wardle, D. A. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9, 870–886 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Sabatini, M. A. & Innocenti, G. Functional relationships between Collembola and plant pathogenic fungi of agricultural soils. Pedobiologia (Jena.) 44, 467–475 (2000).

    Article 

    Google Scholar 

  • Klironomos, J. N. & Kendrick, W. B. Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol. Fertil. Soils 21, 43–52 (1996).

    Article 

    Google Scholar 

  • Klironomos, J. N., Widden, P. & Deslandes, I. Feeding preferences of the collembolan Folsomia candida in relation to microfungal successions on decaying litter. Soil Biol. Biochem. 24, 685–692 (1992).

    Article 

    Google Scholar 

  • Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).

    Article 

    Google Scholar 

  • Arróniz-Crespo, M. et al. Bryophyte-cyanobacteria associations during primary succession in recently deglaciated areas of Tierra del Fuego (Chile). PLoS One 9, 15–17 (2014).

    Article 
    CAS 

    Google Scholar 

  • Jean, M. et al. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. N. Phytol. 227, 1335–1349 (2020).

    CAS 
    Article 

    Google Scholar 

  • Jean, M., Alexander, H. D., Mack, M. C. & Johnstone, J. F. Patterns of bryophyte succession in a 160-year chronosequence in deciduous and coniferous forests of boreal Alaska. Can. J. Res. 47, 1021–1032 (2017).

    Article 

    Google Scholar 

  • Blanchet, F. G., Cazelles, K. & Gravel, D. Co‐occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Fukami, T. & Nakajima, M. Complex plant-soil interactions enhance plant species diversity by delaying community convergence. J. Ecol. 101, 316–324 (2013).

    Article 

    Google Scholar 

  • Martínez-García, L. B., Richardson, S. J., Tylianakis, J. M., Peltzer, D. A. & Dickie, I. A. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. N. Phytol. 205, 1565–1576 (2015).

    Article 
    CAS 

    Google Scholar 

  • Paulson, J. metagenomeSeq: statistical analysis for sparse high-throughput sequencing. Bioconductor.Jp https://github.com/nosson/metagenomeSeq/ (2014).

  • Francesco Ficetola, G. & Denoël, M. Ecological thresholds: an assessment of methods to identify abrupt changes in species-habitat relationships. Ecography 32, 1075–1084 (2009).

    Article 

    Google Scholar 

  • Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R. & Hooten, M. B. A guide to Bayesian model checking for ecologists. Ecol. Monogr. 88, 526–542 (2018).

    Article 

    Google Scholar 

  • Hanusch, M., Ortiz, E. M., Patiño, J. & Schaefer, H. Biogeography and integrative taxonomy of epipterygium (Mniaceae, Bryophyta). Taxon 69, 1150–1171 (2020).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: community ecology package. Github https://github.com/vegandevs/vegan (2019).

  • Baker, S. C. & Barmuta, L. A. Evaluating spatial autocorrelation and depletion in pitfall-trap studies of environmental gradients. J. Insect Conserv. 10, 269–276 (2006).

    Article 

    Google Scholar 

  • Pickett, S. T. A. in Long-Term Studies in Ecology (ed. Likens, G. E.) 110–135 (Springer, 1989).

  • Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. Test 27, 716–748 (2018).

    Article 

    Google Scholar 

  • Hanusch, M., He, X., Ruiz-Hernández, V. & Junker, R. R. Successional generation of functional multidiversity and ecosystem complexity—a dataset from the Ödenwinkel research platform. Mendeley Data. https://doi.org/10.17632/xkv89tbftc.1 (2022).

  • Hanusch, M., He, X., Ruiz-Hernández, V. & Junker, R. R. Supporting dataset and code: succession comprises a sequence of threshold-induced community assembly processes towards multidiversity. Mendeley Data. https://doi.org/10.17632/dr6d3728xb.1 (2022).


  • Source: Ecology - nature.com

    Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach

    Individualism versus collective movement during travel