Vorontsova, M. S., Clark, L. G., Dransfield, J., Govaerts, R. H. A. & Baker, W. J. World Checklist of Bamboos and Rattans 102 (Science Press, 2017).
Lobovikov, M., Paudel, S., Ball, L., Piazza, M., Guardia, M., Ren, H., Russo, L. & Wu, J. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food & Agriculture Org., (2007).
FAO. Global Forest Resources Assessment 2020: Main report, Rome. Accessed 18 Nov 2021. https://www.fao.org/3/ca9825en/ca9825en.pdf. https://doi.org/10.4060/ca9825en (2020).
ISFR http://www.indiaenvironmentportal.org.in/files/file/isfr-fsi-vol1.pdf (Accessed November 18 2021) (2019).
Salam, K. Connecting the poor: bamboo, problems and prospect. South Asia Bamboo Foundation (SABF) (2013) retrieved 17 December 2013 from jeevika.org/bamboo/2g-article-fornbda.docx.
INBAR. Accessed 18 Nov 2021. https://www.inbar.int/global-programmes/.
Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K. & Rooney, D. W. Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind. Eng. Chem. Res. 56, 12119–12130 (2017).
Google Scholar
Fawzy, S., Osman, A., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094 (2020).
Google Scholar
IPCC. Global warming of 1.5 °C. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfeld, T. (eds) An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and eforts to eradicate poverty (2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (Accessed 22 Dec 2019).
Osman, A. et al. Conversion of biomass to biofuels and life cycle assessment: a review. Environ. Chem. Lett. 19, 4075–4118 (2021).
Google Scholar
Balajii, M. & Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ. Chem. Lett. 17, 1447–1469. https://doi.org/10.1007/s10311-019-00885-x (2019).
Google Scholar
Gunarathne, V., Ashiq, A., Ramanayaka, S., Wijekoon, P. & Vithanage, M. Biochar from municipal solid waste for resource recovery and pollution remediation. Environ. Chem. Lett. 17, 1225–1235. https://doi.org/10.1007/s10311-019-00866-0 (2019).
Google Scholar
Lobovikov, M., Schoene, D. & Yping, L. Bamboo in climate change and rural livelihood. Mitig. Adapt. Strateg. Glob. Change 17, 261–276 (2012).
Google Scholar
Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).
Google Scholar
Devi, A. S. & Singh, K. S. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci. Rep. 11, 837 (2021).
Google Scholar
Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 3, 654–663 (2015).
Google Scholar
UNFCCC. Thirty-ninth Meeting of the Clean Development Mechanism Executive Board. UN Campus, Langer Eugen, Hermann-Ehlers-Str. 10, 53113 Bonn, Germany (2008).
FTFA. Food and Trees for Africa. World’s First Bamboo Carbon Offset Credits Issued under the VCS in the Voluntary Carbon Market. In: trees.co.za (2012).
Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).
Google Scholar
Chin, K. L. et al. Bioenergy production from bamboo: potential source from Malaysia’s perspective. Bioresources 12, 6844–6867 (2017).
Google Scholar
Littlewood, J., Wang, L., Tumbull, C. & Murphy, R. J. Techno-economic potential of bioethanol from bamboo in China. Biotechnol. Biofuels 6, 173–173 (2013).
Google Scholar
Buckingham, K. et al. The potential of bamboo is constrained by outmoded policy frames. Ambio 40, 544–548 (2011).
Google Scholar
IPCC shorturl.at/bguxF (Accessed November 18 2021) (2003).
Kempes, C. P., West, G. B., Crowell, K. & Girvan, M. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS ONE 6(6), e20551 (2011).
Google Scholar
Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).
Google Scholar
Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88(5), 895–905 (2014).
Google Scholar
Gao, X. et al. Modeling of the height–diameter relationship using an allometric equation model: a case study of stands of Phyllostachys edulis. J. For. Res. 27, 339–347 (2016).
Google Scholar
Huy, B. & Long, T. T. A manual for bamboo forest biomass and carbon assessment, INBAR technical report (2019).https://www.inbar.int/resources/inbar_publications/a-manual-for-bamboo-forest-biomass-and-carbon-assessment/ (Accessed November 18 2021).
Brahma, B. et al. A critical review of forest biomass estimation equations in India. Trees For. People 5, 100098. https://doi.org/10.1016/j.tfp.2021.100098 (2021).
Google Scholar
Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).
Google Scholar
FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).
Yen, T. M. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J. For. Res. 20, 1–8 (2015).
Google Scholar
Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystem worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).
Google Scholar
Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).
Google Scholar
Rawat, R. S., Arora, G., Rawat, V. R. S., Borah, H. R., Singson, M. Z., Chandra, G., Nautiyal, R. & Rawat, J. Estimation of biomass and carbon stock of bamboo species through development of allometric equations. Indian Council of Forestry Research and Education, Dehradun, INDIA (2018).
Tripathi, S. K. & Singh, K. P. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J. Appl. Ecol. 31, 109–124 (1994).
Google Scholar
Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin. 36, 469–476 (2016).
Google Scholar
Das, D. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5(1&2), 47–59 (2006).
Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10(5/6), 383–91 (1996).
Google Scholar
Seethalakshmi, K. K. & Kumar, M. Bamboos of India: A Compendium. Kerala Forest Research Institute, Peechi and International Network for Bamboo and Rattan, Beijing (1998).
Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).
Google Scholar
FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).
Huy, B. et al. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Vietnam. For. Ecol. Manag. 382, 193–205 (2016).
Google Scholar
Huy, B. et al. Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam’. Forests 7(180), 1–19 (2016).
Huy, B., Poudel, K. P. & Temesgen, H. Aboveground biomass equations for evergreen broadleaf forests in South Central coastal ecoregion of Vietnam: selection of eco-regional or pantropical models’. For. Ecol. Manag. 376, 276–283 (2016).
Google Scholar
Akaike, H. Information theory as an extension of the maximum likelihood principle’. In Petrov, B. N. & Csaki, F. E. (eds) Proceedings of the 2nd international symposium on information theory. Budapest: Akademiai Kiado, 267–281 (1973).
Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978).
Google Scholar
Huy, B. Methodology for developing and cross-validating allometric equations for estimating forest tree biomass. HCM City: Science & Technology, 238 (2017a).
Huy, B. Statistical informatics in forestry. HCM City: Science & Technology, 282 (2017b).
Huy, B., Tinh, N. T., Poudel, K. P., Frank, B. M. & Temesgen, H. Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. For. Ecol. Manag. 437, 156–174 (2019).
Google Scholar
Huy, B., Thanh, G. T., Poudel, K. P. & Temesgen, H. Individual plant allometric equations for estimating aboveground biomass and its components for a common bamboo species (Bambusa procera A. Chev. and A Camus) in tropical forests. Forests 10, 1–17 (2019).
Google Scholar
Mayer, D. G. & Butler, D. G. Statistical validation. Ecol. Model. 68, 21–32 (1993).
Google Scholar
Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).
Google Scholar
Basuki, T. M., Van Laake, P. E., Skidmore, A. K. & Hussin, Y. A. Allometric equations for estimating the aboveground biomass in the tropical lowland Dipterocarp forests’. For. Ecol. Manag. 257, 1684–1694 (2009).
Google Scholar
Kaushal, R. et al. Rooting behavior and soil properties in different bamboo species of Western Himalayan Foothils, India. Sci. Rep. 10, 4966 (2020).
Google Scholar
Kramer, P. J. & Kozlowski, T. T. Physiology of Wood Plants 628–702 (McGraw Hill, 1979).
IPCC Available at http://www.ipcc.ch. AccessedOctober2008 (2008).
Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344 (2010).
Google Scholar
Inoue, A., Sakamoto, S., Suga, H., Kitazato, H. & Sakuta, K. Construction of one-way volume table for the three major useful bamboos in Japan. J. For. Res. 18, 323–334 (2013).
Google Scholar
Kralicek, K., Huy, B., Poudel, K. P., Temesgen, H. & Salas, C. Simultaneous estimation of above- and below-ground biomass in tropical forests of Vietnam. For. Ecol. Manag. 390, 147–156 (2017).
Google Scholar
Montes, N., Gauquelin, W., Badri, V., Bertaudiere, E. H. & Zaoui, A. A non-destructive method for estimating aboveground forest biomass in threatended woodlands. For. Ecol. Manag. 130, 37–46 (2000).
Google Scholar
Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88, 895–905. https://doi.org/10.1007/s10457-014-9734-1 (2014).
Google Scholar
Singnar, P. et al. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa Pseudostachyum polymorphum and Melocanna baccifera. For. Ecol. Manag. 395, 81–91. https://doi.org/10.1016/j.foreco.2017.04.001 (2017).
Google Scholar
Huang, S., Price, D. & Titus, S. J. Development of ecoregion-based height diameter models for white spruce in boreal forests. For. Ecol. Manag. 129, 125–141 (2000).
Google Scholar
Yen, T. M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 57, 10 (2016).
Google Scholar
Tripathi, S. K. & Singh, K. P. Culm recruitment, dry matter dynamics and carbon flux in recently harvested and mature bamboo savannas in the Indian dry tropics. Ecol. Res. 11, 149–164 (1996).
Google Scholar
Singh, A. N. & Singh, J. S. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For. Ecol. Manag. 119, 195–207 (1999).
Google Scholar
Das, D. K. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5, 47–59 (2006).
Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10, 383–391 (1996).
Google Scholar
Arnoult, S. & Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res. 8, 502–526 (2015).
Google Scholar
Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).
Google Scholar
Bargali, S. S., Singh, S. P. & Singh, R. Structure and function of an age series of eucalyptus plantations in central Himalaya I. Dry matter dynamics. Ann. Bot. 69, 405–411 (1992).
Google Scholar
Rizvi, R. H., Dhyani, S. K., Yadav, R. S. & Ramesh, S. Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of North western India. Curr. Sci. 100, 736–742 (2011).
Google Scholar
Kanime, N. et al. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Livelihoods 22(1), 38–50 (2013).
Google Scholar
Arora, G. et al. Growth, biomass, carbon stocks and sequestration in age series Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. https://doi.org/10.3906/tar-1307-94 (2013).
Google Scholar
Song, X. et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).
Google Scholar
Winjum, J. K., Dixon, R. C. & Schroeder, P. E. Carbon storage in forest plantations and their wood products. J. World Resour. Manag. 8, 1–19 (1997).
Yadava, A. K. Biomass production and carbon sequestration in different agroforestry systems of Tarai region. Indian For. 136(2), 234–244 (2010).
Lou, Y., Li, Y., Buckingham, K., Henley, G. & Zhou, G. Bamboo and Climate change mitigation: a comparative analysis of carbon sequestration. In International Network for Bamboo and Rattan (INBAR), Beijing (2010).
Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).
Google Scholar
Source: Ecology - nature.com