in

Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae)

  • Spodek, M., Ben-Dov, Y., Protasov, A., Carvalho, C. J. & Mendel, Z. First record of Dactylopius opuntiae (Cockerell) (Hemiptera: Coccoidea: Dactylopiidae) from Israel. Phytoparasitica 42(3), 377–379. https://doi.org/10.1007/s12600-013-0373-2 (2014).

    Article 

    Google Scholar 

  • García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y. & Hardy, N. B. ScaleNet: a literature-based model of scale insect biology and systematic (2016).

  • Bouharroud, R., Amarraque, A. & Qessaoui, R. First report of the Opuntia cochineal scale Dactylopius opuntiae (Hemiptera: Dactylopiidae) in Morocco. EPPO Bull. 46(2), 308–310. https://doi.org/10.1111/epp.12298 (2016).

    Article 

    Google Scholar 

  • Vanegas-Rico, J. M. et al. Biology and life history of Hyperaspis trifurcata feeding on Dactylopius opuntiae. Biocontrol 61(6), 691–701. https://doi.org/10.1007/s10526-016-9753-0 (2016).

    Article 

    Google Scholar 

  • Mann, J. Cactus-feeding insects and mites. Bull. US. Nat. Mus. 256, 1–15 (1969).

    Google Scholar 

  • Vanegas-Rico, J. M. et al. Hyperaspis trifurcata (Coleoptera: Coccinellidae) and its parasitoids in Central Mexico. Rev. Colomb. Entomol. 41(2), 194–199 (2015).

    Google Scholar 

  • Lopes, E. B., Albuquerque, I. C., Brito, C. H. & Batista, J. D. L. Velocidade de dispersão de dactylopius opuntiae em palma gigante (opuntia fícus-indica). Rev. Bras. Eng. Agric. Ambient. 6(2), 644–649 (2009).

    Google Scholar 

  • Badii, M. H. & Flores, A. E. Prickly pear cacti pests and their control in Mexico. Fla. Entomol. 84, 503–505. https://doi.org/10.2307/3496379 (2001).

    Article 

    Google Scholar 

  • Sbaghi, M., Bouharroud, R., Boujghagh, M. & El Bouhssini, M. Sources de résistance d’Opuntia spp. contre la cochenille à carmin, Dactylopius opuntiae, au Maroc. EPPO Bull. 49(3), 585–592. https://doi.org/10.1111/epp.12606 (2019).

    Article 

    Google Scholar 

  • Khan, H. A. A., Sayyed, A. H., Akram, W., Razald, S. & Ali, M. Predatory potential of Chrysoperla carnea and Cryptolaemus montrouzieri larvae on different stages of the mealybug, Phenacoccus solenopsis: A threat to cotton in South Asia. J. Insect. Sci. 12(1), 147. https://doi.org/10.1673/031.012.14701 (2012).

    Article 
    PubMed Central 

    Google Scholar 

  • El Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Seasonal biology of Dactylopius opuntiae (Hemiptera: Dactylopiidae) on Opuntia ficus-indica (Caryophyllales: Cactaceae) under field and semi-field conditions in Morocco. Ponte. 1, 259–327. https://doi.org/10.21506/j.ponte.2020.1.17 (2020).

    Article 

    Google Scholar 

  • Flores, A., Olvera, H., Rodríguez, S. & Barranco, J. Predation potential of Chilocorus cacti (Coleoptera: Coccinellidae) to the prickly pear cacti pest Dactylopius opuntiae (Hemiptera: Dactylopiidae). Neotrop. Entomol. 42(4), 407–411. https://doi.org/10.1007/s13744-013-0139-z (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Galloway, T. & Handy, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12(1), 345–363. https://doi.org/10.1023/A:1022579416322 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Arias-Estévez, M. et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123(4), 247–260. https://doi.org/10.1016/j.agee.2007.07.011 (2008).

    CAS 
    Article 

    Google Scholar 

  • Palacios-Mendoza, C., Nieto-Hernández, R., Llanderal-Cázares, C. & González-Hernández, H. Efectividad biológica de productos biodegradables para el control de la cochinilla silvestre Dactylopius opuntiae (Cockerell) (Homoptera: Dactylopiidae). Acta. Zool. Mex. 20(3), 99–106 (2004).

    Google Scholar 

  • Borges, L. R. et al. Use of biodegradable products for the control of Dactylopius opuntiae (Hemiptera: Dactylopiidae) in cactus pear. Acta. Hortic. 995, 379–386. https://doi.org/10.17660/ActaHortic.2013.995.49 (2013).

    Article 

    Google Scholar 

  • Carneiro-Leão, M. P., Tiago, P. V., Medeiros, L. V., da Costa, A. F. & de Oliveira, N. T. Dactylopius opuntiae: Control by the Fusarium incarnatum–equiseti species complex and confirmation of mortality by DNA fingerprinting. J. Pest. Sci. 90(3), 925–933. https://doi.org/10.1007/s10340-017-0841-4 (2017).

    Article 

    Google Scholar 

  • da Silva Santos, A. C., Oliveira, R. L. S., da Costa, A. F., Tiago, P. V. & de Oliveira, N. T. Controlling Dactylopius opuntiae with Fusarium incarnatum–equiseti species complex and extracts of Ricinus communis and Poincianella pyramidalis. J. Pest. Sci. 89(2), 539–547. https://doi.org/10.1007/s10340-015-0689-4 (2016).

    Article 

    Google Scholar 

  • Tiago, P. V. et al. Polymorphisms in entomopathogenic fusaria based on inter simple sequence repeats. Biocontrol Sci. Technol. 26(10), 1401–1410. https://doi.org/10.1080/09583157.2016.1210084 (2016).

    Article 

    Google Scholar 

  • Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A. & El Bouhssini, M. Field and laboratory evaluations of different botanical insecticides for the control of Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Int. J. Trop. Insect. Sci. 41(2), 1623–1632. https://doi.org/10.1007/s42690-020-00363-w (2021).

    Article 

    Google Scholar 

  • El-Aalaoui, M. et al. Comparative toxicity of different chemical and biological insecticides against the scale insect Dactylopius opuntiae and their side effects on the predator Cryptolaemus montrouzieri. Arch. Phytopathol. Plant. Prot. 52(1–2), 155–169. https://doi.org/10.1080/03235408.2019.1589909 (2019).

    CAS 
    Article 

    Google Scholar 

  • El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Predatory potential of eleven native Moroccan adult ladybird species on different stages of Dactylopius opuntiae (Cockerell)(Hemiptera: Dactylopiidae). EPPO Bull. 49(2), 374–379. https://doi.org/10.1111/epp.12565 (2019).

    Article 

    Google Scholar 

  • El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. First study of the biology of Cryptolaemus montrouzieri and its potential to feed on the mealybug Dactylopius opuntiae (Hemiptera: Dactylopiidae) under laboratory conditions in Morocco. Arch. Phytopathol. Plant. Prot. 52(13–14), 1112–1124. https://doi.org/10.1080/03235408.2019.1691904 (2019).

    CAS 
    Article 

    Google Scholar 

  • Lester, P. J., Thistlewood, H. M. A. & Harmsen, R. Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24(1), 19–33. https://doi.org/10.1023/A:1006345119387 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Poinar, G. O. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. Gen., n. Sp. (Rhabditida: Heterorhabditidae n. Fam.). Nematol. 21(4), 463–470. https://doi.org/10.1163/187529275X00239 (1976).

    Article 

    Google Scholar 

  • Boemare, N., Akhurst, R. & Mourant, R. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen-nov.. Int. J. Syst. Bacteriol. 43(2), 249–255. https://doi.org/10.1099/00207713-43-2-249 (1993).

    CAS 
    Article 

    Google Scholar 

  • Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Potential use of entomopathogenic nematodes against the soil dwelling stages of onion thrips, Thrips tabaci Lindeman: Laboratory, greenhouse and field trials. Biol. Control. 161, 104677. https://doi.org/10.1016/j.biocontrol.2021.104677 (2021).

    Article 

    Google Scholar 

  • Adams, B. J. & Nguyen, K. B. Taxonomy and systematics. In Entomopathogenic Nematology (ed. Gaugler, R.) 1–34 (CABI Publishing, 2002).

    Google Scholar 

  • Dowds, B. C. A. & Peters, A. Virulence mechanisms. In Entomopathogenic Nematology (ed. Gaugler, R.) 79–90 (CABI Publishing, 2003).

    Google Scholar 

  • Bal, H. K. & Grewal, P. S. Lateral dispersal and foraging behavior of entomopathogenic nematodes in the absence and presence of mobile and non-mobile hosts. PLoS ONE 10(6), e0129887. https://doi.org/10.1371/journal.pone.0129887 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, E. E., Gaugler, R. & Harrison, R. Entomopathogenic nematode host finding—response to host contact cues by cruise and ambush foragers. Parasitology 105, 309–315. https://doi.org/10.1017/S0031182000074230 (1992).

    Article 

    Google Scholar 

  • Campbell, J. F. & Gaugler, R. Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155–169 (1993).

    Article 

    Google Scholar 

  • Lewis, E. E., Gaugler, R. & Harrison, R. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool. 71, 765–769 (1993).

    Article 

    Google Scholar 

  • Grewal, P. S., Lewis, E. E., Gaugler, R. & Campbell, J. F. Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108, 207–215 (1994).

    Article 

    Google Scholar 

  • Poinar, G. O. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological cOntrol (eds Gaugler, R. & Kaya, H. K.) 23–62 (CRC Press, 1990).

    Google Scholar 

  • De Waal, J. Y., Wolhlfarter, M. & Malan, A. P. Laboratory bioassays for the differential susceptibility of Planococcus ficus and Pseudococcus viburni (Hemiptera: Pseudococcidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). S. Afr. J. Plant. Soil. 24, 243–244 (2007).

    Google Scholar 

  • Lacey, L. A. & Shapiro-Ilan, D. I. Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. Annu. Rev. Entomol. 53(1), 121–144. https://doi.org/10.1146/annurev.ento.53.103106.093419 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Van Niekerk, S. & Malan, A. P. Potential of South African entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) for control of the citrus mealybug, Planococcus citri (Pseudococcidae). J. Invertebr. Pathol. 111(2), 166–174. https://doi.org/10.1016/j.jip.2012.07.023 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Půža, V. Control of insect pests by entomopathogenic nematodes. In Principles of Plant Microbe Interactions (ed. Lugtenberg, B.) 175–183 (Springer, 2015).

    Google Scholar 

  • Gulzar, S. et al. Environmental tolerance of entomopathogenic nematodes differs among nematodes arising from host cadavers versus aqueous suspension. J. Invertebr. Pathol. 175, 107452. https://doi.org/10.1016/j.jip.2020.107452 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gulzar, S. et al. Virulence of entomopathogenic nematodes to pupae of Frankliniella fusca (Thysanoptera: Thripidae). J. Econ. Entomol. 114(5), 2018–2023. https://doi.org/10.1093/jee/toab132 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Combined effect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): laboratory, greenhouse and field trials. Insects 12(5), 456. https://doi.org/10.3390/insects12050456 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Usman, M. et al. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 113(6), 2627–2633. https://doi.org/10.1093/jee/toaa209 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Usman, M. et al. Potential of entomopathogenic nematodes against the pupal stage of the apple maggot Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J. Nematol. 52, e2020–e2079. https://doi.org/10.21307/jofnem-2020-079 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • Usman, M., Wakil, W. & Shapiro-Ilan, D. I. Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae). Biol. Control. 163, 104706. https://doi.org/10.1016/j.biocontrol.2021.104706 (2021).

    Article 

    Google Scholar 

  • Grewal, P. S., Wang, X. & Taylor, R. A. J. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: Is there a relationship?. Int. J. Parasitol. 32(6), 717–725. https://doi.org/10.1016/S0020-7519(02)00029-2 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Benseddik, Y. et al. Occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Morocco. Biocontrol. Sci. Technol. 30(10), 1060–1072. https://doi.org/10.1080/09583157.2020.1787344 (2020).

    Article 

    Google Scholar 

  • Mokrini, F. et al. Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-76170-7 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gorgadze, O., Bakhtadze, G., Kereselidze, M. & Lortkipanidze, M. The efficacy of entomopathogenic agents against Halyomorpha halys. Int. J. Curr. Res. 9, 62177–62180 (2017).

    Google Scholar 

  • Tarasco, E. & Triggiani, O. Use of Italian EPNs in controlling Rhytidoderes plicatus Oliv, (Coleoptera, Curculionidae) in potted savoy cabbages. IOBC. WPRS. Bull. OILBN. 28, 9–12 (2005).

    Google Scholar 

  • Moreno Salguero, C. A., Bustillo Pardey, A. E., Lopez Nunez, J. C., Castro Valderrama, U. & Ramirez Sanchez, G. D. Virulence of entomopathogenic nematodes to control Aeneolamia varia (Hemiptera: Cercopidae) in sugarcane. Rev. Colomb. Entomol. 38(2), 260–265 (2012).

    Google Scholar 

  • Julià, I., Morton, A., Roca, M. & Garcia-del-Pino, F. Evaluation of three entomopathogenic nematode species against nymphs and adults of the sycamore lace bug, Corythucha ciliata. Biocontrol 65(5), 623–633. https://doi.org/10.1007/s10526-020-10045-8 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sirjani, F. O., Lewis, E. E. & Kaya, H. K. Evaluation of entomopathogenic nematodes against the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Biol. Control. 48, 274–7280. https://doi.org/10.1016/j.biocontrol.2008.11.002 (2009).

    Article 

    Google Scholar 

  • Guide, B. A., Soares, E. A., Itimura, C. R. & Alves, V. S. Entomopathogenic nematodes in the control of cassava root mealybug Dysmicoccus sp. (Hemiptera: Pseudococcidae). Rev. Colomb. Entomol. 42(1), 16–21. https://doi.org/10.25100/socolen.v42i1.6664 (2016).

    CAS 
    Article 

    Google Scholar 

  • Le Vieux, P. D. & Malan, A. P. The potential use of entomopathogenic nematodes to control Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). S. J. Enol. Vitic. 34(2), 296–306. https://doi.org/10.21548/34-2-1108 (2013).

    Article 

    Google Scholar 

  • Lewis, E. D., Campbell, J., Griffin, C., Kaya, H. & Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control. 38(1), 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007 (2006).

    Article 

    Google Scholar 

  • Rahoo, A. M., Tariq Mukhta, T., Gowen, S. R., Rahoo, R. K. & Abro, S. A. Reproductive potential and host searching ability of entomopathogenic nematode Steinernema feltiae. Pak. J. Zool. 49(1), 229–234. https://doi.org/10.17582/journal.pjz/2017.49.1.229.234 (2017).

    Article 

    Google Scholar 

  • Selvan, S., Campbell, J. F. & Gaugler, R. Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. J. Invertebr. Pathol. 62(3), 278–284. https://doi.org/10.1006/jipa.1993.1113 (1993).

    Article 

    Google Scholar 

  • Gaugler, R., Wang, Y. & Campbell, J. F. Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defences against entomopathogenic nematode attack. J. Invertebr. Pathol. 64(3), 193–199. https://doi.org/10.1016/S00222011(94)90150-3 (1994).

    Article 

    Google Scholar 

  • Burjanadze, M., Kharabadze, N. & Chkhidze, N. Testing local isolates of entomopathogenic microorganisms against brown marmorated stink Bug Halyomorpha halys in Georgia. BIO Web Conf. 18, 00006. https://doi.org/10.1051/bioconf/20201800006 (2020).

    Article 

    Google Scholar 

  • Del Valle, E. E., Dolinski, C. & Souza, R. M. Dispersal of Heterorhabditis baujardi LPP7 (Nematoda: Rhabditida) applied to the soil as infected host cadavers. Int. J. Pest. Manag. 54(2), 115–122. https://doi.org/10.1080/09670870701660579 (2008).

    Article 

    Google Scholar 

  • Griffin, C. T., Boemare, N. E. & Lewis, E. E. Biology and behavior. In Nematodes as Biocontrol Agents 1st edn (eds Grewal, P. S. et al.) 47–59 (CABI Publishing, 2005).

    Chapter 

    Google Scholar 

  • Bastidas, B., Portillo, E. & San-Blas, E. Size does matter: The life cycle of Steinernema spp. in micro-insect hosts. J. Invertebr. Pathol. 121, 46–55. https://doi.org/10.1016/j.jip.2014.06.010 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Stokwe, N. F. & Malan, A. P. Susceptibility of the obscure mealybug, Pseudococcus viburni (Signoret) (Pseudococcidae), to South African isolates of entomopathogenic nematodes. Int. J. Pest. Manag. 62(2), 119–128. https://doi.org/10.1080/09670874.2015.1122250 (2016).

    Article 

    Google Scholar 

  • Stokwe, N. F. & Malan, A. P. Laboratory bioassays to determine susceptibility of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae), to entomopathogenic nematodes. Afr. Entomol. 25(1), 123–136. https://doi.org/10.4001/003.025.0123 (2017).

    Article 

    Google Scholar 

  • Cuthbertson, A. G. et al. Bemisia tabaci: The current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci. 18(1), 1–10. https://doi.org/10.1111/j.1744-7917.2010.01383.x (2011).

    Article 

    Google Scholar 

  • Van Niekerk, S. & Malan, A. P. Compatibility of Heterorhabditis zealandica and Steinernema yirgalemense with agrochemicals and biological control agents. Afr. Entomol. 22, 49–56 (2014).

    Article 

    Google Scholar 

  • Van Niekerk, S. & Malan, A. P. Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. J. Helminthol. 89(2), 189–195. https://doi.org/10.1017/S0022149X13000771 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Aldama-Aguilera, C. & Llanderal-Cázares, C. Grana cochinilla: comparación de métodos de producción en penca cortada. Agrociencia 37(1), 11–19 (2003).

    Google Scholar 

  • Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, Biological Techniques Series (ed. Lacey, L. A.) 281–324 (Academic Press, 1997).

    Chapter 

    Google Scholar 

  • White, C. F. A method for obtaining infective larvae from culture. Science 66, 302–303. https://doi.org/10.1126/science.66.1709.302-a (1927).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shapiro-Ilan, D. I., Morales-Ramos, J. A. & Rojas, M. G. In vivo production of entomopathogenic nematodes. In Microbial-Based Biopesticides 137–158 (Humana Press, 2016).

    Chapter 

    Google Scholar 

  • Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).

    CAS 
    Article 

    Google Scholar 

  • Abbot, W. S. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a (1925).

    Article 

    Google Scholar 

  • Finney, D. J. Probit analysis 3rd edn, 20–63 (Cambridge University Press, 1971).

    MATH 

    Google Scholar 

  • Haye, T., Wyniger, D. & Gariepy, T. D. Recent range expansion of brown marmorated stink bug in Europe. In Proceedings of the Eighth International Conference on Urban Pests (eds Müller, G. et al.) 309–314 (OOK Press, 2014).

    Google Scholar 

  • Carver, R. H. & Nash, J. G. Doing data analysis with SPSS: version 18.0. (Cengage Learning, 2011).


  • Source: Ecology - nature.com

    Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees

    Team creates map for production of eco-friendly metals