Frelich, L. E. Forest Dynamics and Disturbance Regimes, Study from Every Green and Deciduous Temperate Forest 287 (Cambridge University Press, 2002).
Google Scholar
Hadley, K. S. The role of disturbance, topography, and forest structure in the development of a montane forest landscape. J. Torrey Bot. Soc. 121(1), 47–61 (1994).
Google Scholar
Gracia, M., Montane, F., Pique, J. & Retana, J. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). For. Ecol. Manag. 242, 391–397 (2007).
Google Scholar
Scheller, R. M. & Mladenoff, D. J. Understory species patterns and diversity in old-growth and managed northern hardwood forests. Ecol. Appl. 12(5), 1329–1343 (2002).
Google Scholar
Sagheb-Talebi, K., Sajedi, T. & Pourhashemi, M. Forest of Iran, a Treasure from the Past, a Hope for the Future 145 (Springer, 2014).
Homami Totmaj, L., Alizadeh, K., Giahchi, P., Darvishi Khatooni, J. & Behling, H. Late Holocene Hyrcanian forest and environmental dynamics in the mid-elevated highland of the Alborz Mountains, northern Iran. Rev. Palaeobot. Palynol. 295, 104507 (2021).
Google Scholar
Vakili, M. et al. Resistance and resilience of Hyrcanian mixed forests under natural and anthropogenic disturbances. Front. For. Glob. Change 4, 98 (2021).
Google Scholar
Aguirre, O., Hui, G., von Gadow, K. & Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 183(1–3), 137–145 (2003).
Google Scholar
Li, Y., Hui, G., Zhao, Z., Hu, Y. & Ye, S. Spatial structural characteristics of three hardwood species in Korean pine broad-leaved forest—Validating the bivariate distribution of structural parameters from the point of tree population. For. Ecol. Manag. 314, 17–25 (2014).
Google Scholar
Condit, R. et al. Spatial patterns in the distribution of tropical tree species. Science 288(5470), 1414–8 (2000).
Google Scholar
Lü, C. et al. Population structure and spatial patterns of Haloxylon ammodendron population along the northwestern edge of Junggar basin. J. Desert Res. 32, 380–387 (2012).
Google Scholar
Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Theodose, T. A. The influence of landform on the understory plant community in a temperate Beech forest in northern Iran. Ecol. Res. 30, 385–394 (2015).
Google Scholar
Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Said-Pullicino, D. Slope Gradient and Shape Effects on Soil Profiles in the Northern Mountainous Forests of Iran. Euras. Soil Sci. 49(12), 1366–1374 (2016).
Google Scholar
Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Said-Pullicino, D. The effect of landform on soil microbial activity and biomass in a Hyrcanian oriental beech stand. CATENA 149, 309–317 (2017).
Google Scholar
Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Theodose, T. A. Tree species composition biodiversity and regeneration in response to catena shape and position in a mountain forest. Scand. J. For. Res. 32(1), 80–90 (2017).
Google Scholar
Harms, K. E., Condit, R., Hubbell, S. P. & Foster, R. B. Habitat association of tree and shrubs in a 50-ha neotropical forest plot. J. Ecol. 89, 947–959 (2001).
Google Scholar
Gunatilleke, C. V. S. et al. Species-habitat associations in a Sri Lank and ipterocap forest. J. Trop. Ecol. 22, 371–378 (2006).
Google Scholar
Rubino, D. L. & McCarthy, B. C. Evaluation of coarse woody debris and forest vegetation across topographic gradients in a southern Ohio forest. For. Ecol. Manag. 183, 221–238 (2003).
Google Scholar
Mohsennezhad, M., Shokri, M., Zal, H. & Jafarian, Z. The effects of soil properties and physiographic factors on plant communities distribution in Behrestagh Rangeland. Rangeland 4(2), 262–275 (2010).
Sefidi, K., Esfandiary Darabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. IFOREST Biogeosci. For. 9, 658–665 (2016).
Google Scholar
Valipour, A. et al. Relationships between forest structure and tree’s dimensions with physiographical factors in Armardeh forests (Northern Zagros). Iran. J. For. Poplar Res. 21(1), 30–47 (2013).
Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).
Google Scholar
Naqinezhad, A. et al. The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Glob. Change Biol. 28(3), 1103–1118 (2022).
Google Scholar
Pelissaria, A. L. et al. Geostatistical modeling applied to spatiotemporal dynamics of successional tree species groups in a natural Mixed Tropical Forest. Ecol. Indic. 78, 1–7 (2017).
Google Scholar
Pretzsch, H. & Zenner, E. K. Toward managing mixed-species stands: From parametrization to prescription. For. Ecosyst. 4, 19 (2017).
Google Scholar
Yousefi, S. et al. Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran. J. Hydrol. Hydromech. 66(1), 97–106 (2018).
Google Scholar
Soil Survey Staff. Keys to Soil Taxonomy 12th edn. (USDA-Natural Resources Conservation Service, 2014).
Land Info, L. L. C. http://www.landinfo.com/country-iran.html. Accessed (2013).
Beven, K. J. & Kirkby, M. J. A. Physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du basin versant. Hydrol. Sci. J. 24(1), 43–69 (1979).
Google Scholar
Bourgeron, P. S. Spatial aspects of vegetation structure. In Ecosystems of the World 14A—Tropical Rain Forest Ecosystems, Structure and Function (ed. Golley, F. B.) 29–47 (Elsevier, 1983).
Moeur, M. Characterizing spatial patterns of trees using stem-mapped data. For. Sci. 39(4), 756–775 (1993).
Google Scholar
Chokkalingam, U. & White, A. Structure and spatial patterns of trees in old-growth northern hardwood and mixed forests of northern Maine. Plant Ecol. 156(2), 139–160 (2001).
Google Scholar
Ferhat, K. A. R. A. Spatial patterns of longleaf pine (Pinus palustris Mill.): A case study. Euras. J. For. Sci. 9(3), 151–159 (2021).
Pommerening, A. Approaches to quantifying forest structures. Forestry 75(3), 305–324 (2002).
Google Scholar
Pommerening, A. & Särkkä, A. What mark variograms tell about spatial plant interactions. Ecol. Model. 251, 64–72 (2013).
Google Scholar
Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils. 27, 315–334 (1998).
Google Scholar
Landim, P. M. B. & Sturaro, J. R. Krigagem indicativa aplicada à elaboração de mapas probabilísticos de riscos. Geomatematica, Texto didático, 6. DGA, IGCE, Universidade Estadual de São Paulo (UNESP), Rio Claro, São Paulo, Brazil. Available at: http://www.rc.unesp.br/igce/aplicada/textodi.html. Accessed 25/05/13 (2002).
Deutsch, C. V. & Journel, A. G. GSLIB: Geostatistical Software Library and User’s Guide 119 (Oxford University Press, 1992).
Oliver, M. A. & Webster, R. Combining nested and linear sampling for determining the scale and form of spatial variation of regionalized variables. Geogr. Anal. 18, 227–242 (1986).
Google Scholar
Zhao, Z., Ashraf, M. I. & Meng, F. R. Model prediction of soil drainage classes over a large area using a limited number of field samples: A case study in the province of Nova Scotia, Canada. Can. J. Soil Sci. 93(1), 73–83 (2013).
Google Scholar
Brubaker, S. C., Jones, A. J., Lewis, D. T. & Frank, K. Soil properties associated with landscape position. Soil Sci. Soc. Am. J. 57, 235–239 (1993).
Google Scholar
Bellingham, P. J. & Tanner, E. V. J. The influence of topography on tree growth, mortality, and recruitment in a tropical Montane Forest. Biotropica 32(3), 378–384 (2000).
Google Scholar
Luizao, R. C. C. et al. Variation of carbon and nitrogen cycling processes along a topographic gradient in a Central Amazonian forest. Glob. Change Biol. 10, 592–600 (2004).
Google Scholar
Beaty, R. M. & Taylor, A. H. Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, southern cascades, California, USA. J. Biogeogr. 28, 955–966 (2001).
Google Scholar
Castilho, C. V. et al. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. For. Ecol. Manag. 234, 85–96 (2006).
Google Scholar
Swanson, F. J., Kratz, T. K., Caine, N. & Woodmansee, R. G. Landform effects on eco-system patterns and processes. Biol. Sci. 38, 92–98 (1988).
Kooch, Y., Hosseini, S. M., Mohammadi, J. & Hojjati, S. M. Windthrow effects on biodiversity of natural forest ecosystem in local scale. Hum. Environ. 9(3), 65–72 (2011).
Köhl, M. & Gertner, G. Geostatistics in evaluating forest damage surveys: Considerations on methods for describing spatial distributions. For. Ecol. Manag. 95(2), 131–140 (1997).
Google Scholar
Habashi, H., Hosseini, S. M., Mohammadi, J. & Rahmani, R. Stand structure and spatial pattern of trees in mixed Hyrcanian beech forests of Iran. Iran. J. For. Poplar Res. 15(1), 64–55 (2007).
Von Oheimb, G., Westphal, C., Tempel, H. & Härdtle, W. Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). For. Ecol. Manag. 212, 253–263 (2005).
Google Scholar
Kunstler, G., Curt, T. & Lepart, J. Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens Mill.) seedlings in natural pine (Pinus sylvestris L.) woodlands. Eur. J. For. Res. 123(4), 331–337 (2004).
Google Scholar
Mosandl, R. & Kleinert, A. Development of oaks (Quercus petraea (Matt.) Liebl.) emerged from bird-dispersed seeds under old-growth pine (Pinus sylvestris L.) stands. For. Ecol. Manag. 106, 35–44 (1998).
Google Scholar
Hosseini, A., Jafari, M. R. & Askari, S. Investigation and recognition of ecological characteristics of sites of Persian oak and pistachio old trees in forests of Ilam province. Wood Sci. Technol. 26(4), 113–128 (2019).
Ghalandarayeshi, S., Nord-Larsen, T., Johannsen, V. K. & Larsen, J. B. Spatial patterns of tree species in Suserup Skov—A semi-natural forest in Denmark. For. Ecol. Manag. 406, 391–401 (2017).
Google Scholar
Petritan, I. C., Marzano, R., Petritan, A. M. & Lingua, E. Overstory succession in a mixed Quercus petraea–Fagus sylvatica old growth forest revealed through the spatial pattern of competition and mortality. For. Ecol. Manag. 326, 9–17 (2014).
Google Scholar
Watt, A. S. On the ecology of British Beech woods with special reference to their regeneration: Part II, sections II and III. The development and structure of beech communities on the Sussex downs. J. Ecol. 13, 27–73 (1925).
Google Scholar
Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology 88, 3088–3102 (2007).
Google Scholar
Moradi, M., Marvie Mohadjer, M. R., Sefidi, K., Zobiri, M. & Omidi, A. Over matured beech trees (Fagus orientalis Lipsky.) component of close to nature forestry in northern Iran. J. For. Res. 23(2), 289–294 (2012).
Google Scholar
Lan, G. Y. et al. Spatial dispersion patterns of trees in a tropical rainforest in Xishuangbanna, southwest China. Ecol. Res. 24, 1117–1124 (2009).
Google Scholar
Lan, G., Hu, Y., Cao, M. & Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. For. Ecol. Manag. 262(8), 1507–1513 (2011).
Google Scholar
Menendez, I., Moreno, G., Fernando Gallardo Lancho, J. & Saavedra, J. Soil solution composition in forest soils of sierra de gata mountains, Central-Western Spain: Relationship with soil water content. Arid Land Res. Manag. 9(4), 495–502 (1995).
Kopecký, M., Macek, M. & Wild, J. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Sci. Total Environ. 757, 143785 (2021).
Google Scholar
Delfan Abazari, B., Sagheb-Talebi, K. & Namiranian, M. Development stages and dynamic of undisturbed Oriental beech (Fagus orientalis Lipsky) stands in Kelardasht region (Iran). Iran. J. For. Poplar Res. 12, 307–326 (2004) ((in Persian)).
Sagheb-Talebi K., Delfan Abazari B. & Namiranian M. Description of decay stage in a natural Oriental beech (Fagus orientalis Lipsky) forest in Iran, preliminary results. In Natural Forests in the Temperate Zone of Europe – Values and Utilization (eds. Commarmot, B. & Hamor, F.D.), Proceedings of conference in Mukachevo, Oct 13–17, 130–134 (2003).
Christensen, M., Emborg, J. & Nielsen, A. B. The forest cycle of Suserup Skov: Revisited and revised. Ecol. Bull. 52, 33–42 (2007).
Dobrowolska, D. et al. A review of European ash (Fraxinus excelsior L.): Implications for silviculture. Forestry 84, 133–148 (2011).
Google Scholar
Akhani, H., Djamali, M., Ghorbanalizadeh, A. & Ramezani, E. Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, palaeoecology and conservation. Pak. J. Bot. 42(1), 231–258 (2010).
Pourmajidian, M. R. et al. Effect of shelterwood cutting method on forest regeneration and stand structure in a Hyrcanian forest ecosystem. J. For. Res. 21, 265–272 (2010).
Google Scholar
Szwagrzyk, J. & Szewczyk, J. Tree mortality and effects of release from competition in an old-growth Fagus-Abies-Picea stand. J. Veg. Sci. 12, 621–626 (2001).
Google Scholar
Janík, D. et al. Tree spatial patterns of Fagus sylvatica expansion over 37 years. For. Ecol. Manag. 375, 134–145 (2016).
Google Scholar
Amiri, M. Dynamics of Structural Characteristics of a Natural Unlogged Fagus orientalis Lipsky Stand during a 5-year’s Period in Shast-Kalate Forest, Gorgan, Iran, Ph.D. Dissertation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan (2013) (in Persian).
Soofi, M. Effects of anthropogenic pressure on large mammal species in the Hyrcanian forest, Iran: Effects of poaching, logging and livestock grazing on large mammals (Doctoral dissertation, Dissertation, Göttingen, Georg-August Universität, 2018).
Source: Ecology - nature.com