in

Reef larval recruitment in response to seascape dynamics in the SW Atlantic

  • McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641. https://doi.org/10.1126/science.1255641 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).

    ADS 
    Article 

    Google Scholar 

  • IPBES The global assessment report on biodiversity and ecosystem services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://ipbes.net/global-assessment (2019).

  • Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596. https://doi.org/10.1038/nature09268 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Canonico, G. et al. Global observational needs and resources for marine biodiversity. Front. Mar. Sci. 6, 367. https://doi.org/10.3389/fmars.2019.00367 (2019).

    Article 

    Google Scholar 

  • Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 211. https://doi.org/10.3389/fmars.2018.00211 (2018).

    Article 

    Google Scholar 

  • Ehrnsten, E., Norkko, A., Timmermann, K. & Gustafsson, B. G. Benthic-pelagic coupling in coastal seas—Modelling macrofaunal biomass and carbon processing in response to organic matter supply. J. Mar. Sys. 196, 36–47. https://doi.org/10.1016/j.jmarsys.2019.04.003 (2019).

    Article 

    Google Scholar 

  • Centurioni, L. R. et al. Global in situ observations of essential climate and ocean variables at the air-sea interface. Front. Mar. Sci. 6, 419. https://doi.org/10.3389/fmars.2019.00419 (2019).

    Article 

    Google Scholar 

  • Murphy, S. E. et al. Fifteen years of lessons from the Seascape approach: A framework for improving ocean management at scale. Conserv. Sci. Pract. 3, e423. https://doi.org/10.1111/csp2.423 (2021).

    Article 

    Google Scholar 

  • Pittman, S. J. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29. https://doi.org/10.3354/meps13661 (2021).

    ADS 
    Article 

    Google Scholar 

  • Swanborn, D. J., Huvenne, V. A., Pittman, S. J. & Woodall, L. C. Bringing seascape ecology to the deep seabed: A review and framework for its application. Limnol. Oceanogr. 67, 66–88. https://doi.org/10.1002/lno.11976 (2022).

    ADS 
    Article 

    Google Scholar 

  • Flint, L. E. & Flint, A. L. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol. Process 1, 2. https://doi.org/10.1186/2192-1709-1-2 (2012).

    Article 

    Google Scholar 

  • Fagundes, M. et al. Downscaling global ocean climate models improves estimates of exposure regimes in coastal environments. Sci. Rep. 10, 14227. https://doi.org/10.1038/s41598-020-71169-6 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zacarias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: A review and critique. Aquatic Conser: Mar. Freshw. Ecosyst. 11, 59–76. https://doi.org/10.1002/aqc.429 (2001).

    Article 

    Google Scholar 

  • Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25(3155), 153–160. https://doi.org/10.1016/j.tree.2009.10.001 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81(8), 2250–2263. https://doi.org/10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2 (2000).

    Article 

    Google Scholar 

  • Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3(5), 41. https://doi.org/10.1890/ES11-00366.1 (2012).

    Article 

    Google Scholar 

  • Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500. https://doi.org/10.1146/annurev.ecolsys.27.1.477 (1996).

    Article 

    Google Scholar 

  • Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine populations. Bull. Mar. Sci. 70(1), 377–396 (2002).

    Google Scholar 

  • Roughgarden, J., Gaines, S. & Iwasa, Y. Recruitment dynamics in complex life cycles. Science 241, 1460–1466. https://doi.org/10.1126/science.11538249 (1988).

    ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Gilg, M. R. & Hilbish, T. J. The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84(11), 2989–2998. https://doi.org/10.1890/02-0498 (2003).

    Article 

    Google Scholar 

  • D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl. Acad. Sci. USA 112(45), 13940–13945. https://doi.org/10.1073/pnas.1513754112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fogarty, M. J., Sissenwine, M. P. & Cohen, E. B. Recruitment variability and the dynamics of exploited marine populations. Trends Ecol. Evol. 6(8), 241–246. https://doi.org/10.1016/0169-5347(91)90069-A (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wahle, R. A. Revealing stock–recruitment relationships in lobsters and crabs:is experimental ecology the key?. Fish. Res. 65, 3–32. https://doi.org/10.1016/j.fishres.2003.09.004 (2003).

    Article 

    Google Scholar 

  • Gosselin, L. A. & Qian, P. Y. Early post-settlement mortality of an intertidal barnacle: a critical period for survival. Mar. Ecol. Prog. Ser. 135, 69–75. https://doi.org/10.3354/meps135069 (1996).

    ADS 
    Article 

    Google Scholar 

  • Penin, L. et al. Early post-settlement mortality and the structure of coral assemblages. Mar. Ecol. Prog. Ser. 408, 55–64. https://doi.org/10.3354/meps08554 (2010).

    ADS 
    Article 

    Google Scholar 

  • Broitman, B. R., Mieszkowaska, N., Helmuth, B. & Blanchette, C. A. Climate recruitment of rocky shore intertidal invertebrates in the eastern North Atlantic. Ecology 89(11), S81–S90. https://doi.org/10.1890/08-0635.1 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15. https://doi.org/10.3354/meps308001 (2006).

    ADS 
    Article 

    Google Scholar 

  • Mazzuco, A. C. A., Christofoletti, R. A., Coutinho, R. & Ciotti, A. M. The influence of atmospheric cold fronts on larval supply and settlement of intertidal invertebrates: Case studies in the Cabo Frio coastal upwelling system (SE Brazil). J. Sea Res. 137, 47–56. https://doi.org/10.1016/j.seares.2018.02.010 (2018).

    Article 

    Google Scholar 

  • Morgan, S. G., Fisher, J. L. & Mace, A. J. Larval recruitment in a region of strong, persistent upwelling and recruitment limitation. Mar. Ecol. Prog. Ser. 394, 79–99. https://doi.org/10.3354/meps08216 (2009).

    ADS 
    Article 

    Google Scholar 

  • Pfaff, M. C., Branch, G. M., Wieters, E. A., Branch, R. A. & Broitman, B. R. Upwelling intensity and wave exposure determine recruitment of intertidal mussels and barnacles in the southern Benguela upwelling region. Mar. Ecol. Prog. Ser. 425, 141–152. https://doi.org/10.3354/meps09003 (2001).

    ADS 
    Article 

    Google Scholar 

  • Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395. https://doi.org/10.1007/s00338-008-0461-9 (2009).

    ADS 
    Article 

    Google Scholar 

  • Groom, S. et al. Satellite ocean colour: Current status and future perspective. Front. Mar. Sci. 6, 485. https://doi.org/10.3389/fmars.2019.00485 (2019).

    Article 

    Google Scholar 

  • Moltmann, T. et al. A global ocean observing system (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies. Front. Mar. Sci. 6, 291. https://doi.org/10.3389/fmars.2019.00291 (2019).

    Article 

    Google Scholar 

  • Kavanaugh, M. T. et al. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology. Prog. Oceanogr. 120, 291–304. https://doi.org/10.1016/j.pocean.2013.10.013 (2014).

    ADS 
    Article 

    Google Scholar 

  • Kavanaugh, M. T. et al. Seascapes as a new vernacular for ocean monitoring, management and conservation. ICES J. Mar. Sci. 73(7), 1839–1850. https://doi.org/10.1093/icesjms/fsw086 (2016).

    Article 

    Google Scholar 

  • Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/nclimate1627 (2013).

    ADS 
    Article 

    Google Scholar 

  • Montes, E. et al. Dynamic satellite seascapes as a biogeographic framework for understanding phytoplankton assemblages in the Florida Keys National Marine Sanctuary United States. Front. Mar. Sci. 7, 575. https://doi.org/10.3389/fmars.2020.00575 (2020).

    Article 

    Google Scholar 

  • Mazzuco, A. C. A. et al. Lower diversity of recruits in coastal reef assemblages are associated with higher sea temperatures in the tropical South Atlantic. Mar. Environ. Res. 148, 87–98. https://doi.org/10.1016/j.marenvres.2019.05.008 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mazzuco, A. C. A., Stelzer, P. S. & Bernardino, A. F. Substrate rugosity and temperature matters: Patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic. PeerJ Life Environ. 8, e8289. https://doi.org/10.7717/peerj.8289 (2020).

    Article 

    Google Scholar 

  • Stelzer, P. S. et al. Taxonomic and functional diversity of benthic macrofauna associated with rhodolith beds in SE Brazil. PeerJ 9, e11903. https://doi.org/10.7717/peerj.11903 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernardino, A. F. et al. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions. Estuar. Coast. Shelf S. 166, 74–82. https://doi.org/10.1016/j.ecss.2015.05.021 (2015).

    ADS 
    Article 

    Google Scholar 

  • Francini-Filho, R. B. et al. Dynamics of coral reef benthic assemblages of the Abrolhos bank, eastern Brazil: Inferences on natural and anthropogenic drivers. PLoS ONE 8(1), e54260. https://doi.org/10.1371/journal.pone.0054260 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Araújo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038. https://doi.org/10.1016/j.marenvres.2020.105038 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fulton, E. A. et al. Modelling marine protected areas: insights and hurdles. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370(1681), 201. https://doi.org/10.1098/rstb.2014.0278 (2015).

    Article 

    Google Scholar 

  • Carr, M. H. et al. The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquat. Conserv. Mar. Freshw. Ecosyst. 27(S1), 6–29. https://doi.org/10.1002/aqc.2800 (2017).

    Article 

    Google Scholar 

  • Krueck, N. C. et al. Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol. Appl. 27, 925–941. https://doi.org/10.1002/eap.1495 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ekau, W. & Knoppers, B. An introduction to the pelagic system of the Northeast and East Brazilian shelf. Arch. Fish. Mar. Res. 47(2/3), 5–24 (1999).

    Google Scholar 

  • Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57(7), 573–583. https://doi.org/10.1641/B570707 (2007).

    Article 

    Google Scholar 

  • Vermeij, M. J. A., Fogarty, N. D. & Miller, M. W. Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 310, 119–128. https://doi.org/10.3354/meps310119 (2006).

    ADS 
    Article 

    Google Scholar 

  • Gímenez, L. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology 91(5), 1401–1403. https://doi.org/10.1890/09-1028.1 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Jenkins, S. R., Marshall, D. & Fraschetti, S. Settlement and Recruitment. In Marine Hard Bottom Communities. Ecological Studies Analysis and Synthesis (ed. Wahl, M.) (Springer, 2009). https://doi.org/10.1007/b76710_12.

    Chapter 

    Google Scholar 

  • von der Meden, C. E. O., Porri, F., Radloff, S. & McQuaid, C. D. Settlement intensification and coastline topography: Understanding the role of habitat availability in the pelagic–benthic transition. Mar. Ecol. Prog. Ser. 459, 63–71. https://doi.org/10.3354/meps09762 (2012).

    ADS 
    Article 

    Google Scholar 

  • Gorman, D. et al. Decadal losses of canopy-forming algae along the warm temperate coastline of Brazil. Glob. Change Biol. 26, 1446–1457. https://doi.org/10.1111/gcb.14956 (2020).

    ADS 
    Article 

    Google Scholar 

  • Pianca, C., Mazzini, P. L. F. & Siegle, E. Brazilian offshore wave climate based on NWW3 reanalysis. Braz. J. Oceanogr. 58(1), 53–70. https://doi.org/10.1590/S1679-87592010000100006 (2010).

    Article 

    Google Scholar 

  • Muñiz, C., McQuaid, C. D. & Weidberg, N. Seasonality of primary productivity affects coastal species more than its magnitude. Sci. Total Environ. 757, 143740. https://doi.org/10.1016/j.scitotenv.2020.143740 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Edmunds, P. J. Finding signals in the noise of coral recruitment. Coral Reefs 41, 81–93. https://doi.org/10.1007/s00338-021-02204-9 (2022).

    Article 

    Google Scholar 

  • Zuercher, R. Pelagic-benthic coupling in kelp forests of central California. Mar. Ecol. Prog. Ser. 682, 79–96. https://doi.org/10.3354/meps13937 (2022).

    ADS 
    Article 

    Google Scholar 

  • Manríquez, P. H. & Castilla, J. C. Significance of marine protected areas in central Chile as seeding grounds for the gastropod Concholepas concholepas. Mar. Ecol. Prog. Ser. 215, 201–211. https://doi.org/10.3354/meps215201 (2001).

    ADS 
    Article 

    Google Scholar 

  • Domingues, C. P., Nolasco, R., Dubert, J. & Queiroga, H. Model-derived dispersal pathways from multiple source populations explain variability of invertebrate larval supply. PLoS ONE 7(4), e35794. https://doi.org/10.1371/journal.pone.0035794 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nickols, K. J., Miller, S. H., Gaylord, B., Morgan, S. G. & Largier, J. L. Spatial differences in larval abundance within the coastal boundary layer impact supply to shoreline habitats. Mar. Ecol. Prog. Ser. 494, 191–203. https://doi.org/10.3354/meps10572 (2013).

    ADS 
    Article 

    Google Scholar 

  • Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 14999. https://doi.org/10.1038/s41598-017-14794-y (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes, T. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Meehl, G. A. & Tebaldi, C. More Intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le, C., Lehrter, J. C., Hu, C. & Obenour, D. R. Satellite-based empirical models linking river plume dynamics with hypoxic area and volume. Geophys. Res. Lett. 43, 2693–2699. https://doi.org/10.1002/2015GL067521 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Runge, J. et al. Inferring causation from time series in earth system sciences. Nat. Commun. 10, 2553. https://doi.org/10.1038/s41467-019-10105-3 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbas, M. M., Melesse, A. M., Scinto, L. J. & Rehage, J. S. Satellite estimation of chlorophyll-a using moderate resolution imaging spectroradiometer (MODIS) sensor in shallow coastal water bodies: validation and improvement. Water 11, 1621. https://doi.org/10.3390/w11081621 (2019).

    CAS 
    Article 

    Google Scholar 

  • Scrosati, R. A. & Ellrich, J. A. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005–2016): relationships with sea surface temperature and phytoplankton abundance. PeerJ Life Environ. 4, e2623. https://doi.org/10.7717/peerj.2623 (2016).

    Article 

    Google Scholar 

  • Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24(6), 2416–2433. https://doi.org/10.1111/gcb.14108 (2018).

    ADS 
    Article 

    Google Scholar 

  • Muelbert, J. H. et al. ILTER-the International long-term ecological research network as a platform for global coastal and ocean observation. Front. Mar. Sci. 6, 527. https://doi.org/10.3389/fmars.2019.00527 (2019).

    Article 

    Google Scholar 

  • Pereira, A. F., Belém, A. L., Castro, B. M. & Geremias, R. G. Tide-topography interaction along the eastern Brazilian shelf. Cont. Shelf Res. 25, 1521–1539. https://doi.org/10.1016/j.csr.2005.04.008 (2005).

    ADS 
    Article 

    Google Scholar 

  • Longo, P.A.S., Fernandes, M.C., Leite, F.P.P. & Passos, F.D. Gastropoda (Mollusca) associados a bancos de Sargassum sp. no Canal de São Sebastião–São Paulo, Brasil. Biota Neotropica 14(4), e20140115; doi: https://doi.org/10.1590/1676-06032014011514 (2014)

  • Broitman, B. et al. Spatial and temporal patterns of invertebrate recruitment along the West coast of the United States. Ecol. Monogr. 78, S81–S90. https://doi.org/10.1890/06-1805.1 (2008).

    Article 

    Google Scholar 

  • Todd, C. D. Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe?. Hydrobiologia 375, 1–21. https://doi.org/10.1023/A:1017007527490 (1998).

    Article 

    Google Scholar 

  • Jenkins, S.R., Marshall, D. & Fraschetti, S. Settlement and Recruitment in Marine Hard Bottom Communities Ecological Studies (Analysis and Synthesis) (ed. Wahl, M.), vol 206; doi: https://doi.org/10.1007/b76710_12 (Springer, 2009)

  • Shanks, A.L. An Identification Guide to the Larval Marine Invertebrates of the Pacific Northwest. Oregon State University Press, Corvallis, Oregon. 320 pages. ISBN 0–87071–531–3 (2001).

  • Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Climate 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).

    ADS 
    Article 

    Google Scholar 

  • Simons, R.A. ERDDAP. Monterey, CA: NOAA/NMFS/SWFSC/ERD; https://coastwatch.pfeg.noaa.gov/erddap . (2020).

  • Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, John Wiley & Sons Ltd; doi: https://doi.org/10.1002/9781118445112.stat07841 (2017).

  • Sokal, R. & Rohlf, F. J. Biometry: the principles and practice of statistics in biological research. (WH Freeman and Company, 2003).

  • Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).

    Article 

    Google Scholar 

  • Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5(1), 3–21. https://doi.org/10.1093/jpe/rtr044 (2012).

    Article 

    Google Scholar 

  • Marshall, D. J. & Keough, M. J. The evolutionary ecology of offspring size in marine invertebrates. Adv. Mar. Biol. 53, 1–60. https://doi.org/10.1016/S0065-2881(07)53001-4 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525. https://doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 (2003).

    Article 

    Google Scholar 

  • Quintana, C. O., Bernardino, A. F., Moraes, P. C., Valdemarsen, T. & Sumida, P. Y. G. Effects of coastal upwelling on the structure of macrofaunal communities in SE Brazil. J. Mar. Syst. 143, 120–129. https://doi.org/10.1016/j.jmarsys.2014.11.003 (2015).

    Article 

    Google Scholar 

  • Hastie, T. & Tibshirani, R. Generalized Additive Models. (Chapman and Hall, 1990).

  • Hastie, T. Generalized additive models in Statistical Models (eds. Chambers, J. M., Hastie, T.J.) (Wadsworth & Brooks, 1992).

  • Garcia, L. Escaping the bonferroni iron claw in ecological studies. Oikos 105, 657–663. https://doi.org/10.1111/j.0030-1299.2004.13046.x (2004).

    Article 

    Google Scholar 

  • Verhoeven, J. F., Simonsen, K. L. & McIntyre, L. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x (2005).

    Article 

    Google Scholar 

  • Schmunk, R. B. Panoply 3.2.1. Available at http://www.giss.nasa.gov/ tools/panoply (2013).

  • R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Sandrini-Neto, L. & Camargo, M.G. GAD: an R package for ANOVA designs from general principles. Available on CRAN (2020).

  • Komsta, L. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).

  • Oksanen J., et al. vegan: Community Ecology Package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan (2019).

  • Rossi, J.-P. rich: an R package to analyse species richness. Diversity 3(1), 112–120 (2011).

    Article 

    Google Scholar 

  • Hastie, T. gam: Generalized Additive Models. R package version 1.16.1. https://CRAN.R-project.org/package=gam (2019).


  • Source: Ecology - nature.com

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC

    Stop ignoring map uncertainty in biodiversity science and conservation policy