in

Enhanced spring warming in a Mediterranean mountain by atmospheric circulation

  • Foster, G. & Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011).

    ADS 
    Article 

    Google Scholar 

  • Cahill, N., Rahmstorf, S. & Parnell, A. C. Change points of global temperature. Environ. Res. Lett. 10, 084002 (2015).

    ADS 
    Article 

    Google Scholar 

  • Yan, X. H. et al. The global warming hiatus: Slowdown or redistribution?. Earth’s Future 4, 472–482 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 5632 (2015).

    Article 

    Google Scholar 

  • Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, 04705. https://doi.org/10.1029/2011GL050582 (2012).

    ADS 
    Article 

    Google Scholar 

  • Pepin, N. C. & Lundquist, J. D. Temperature trends at high elevations: patterns across the globe. Geophys. Res. Lett. 35, 14 (2008).

    Article 

    Google Scholar 

  • Rangwala, I. & Miller, J. R. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim. Change 114, 527–547 (2012).

    ADS 
    Article 

    Google Scholar 

  • Wang, Q., Fan, X. & Wang, M. Recent warming amplification over high elevation regions across the globe. Clim. Dyn. 43, 87–101 (2014).

    CAS 
    Article 

    Google Scholar 

  • Fan, X., Wang, Q., Wang, M. & Jiménez, C. V. Warming amplification of minimum and maximum temperatures over high-elevation regions across the globe. PLoS ONE 10, e0140213 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424 (2015).

    ADS 
    Article 

    Google Scholar 

  • Piccarreta, M., Lazzari, M. & Pasini, A. Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int. J. Climatol. 35, 1964–1975 (2015).

    Article 

    Google Scholar 

  • Gonzalez-Hidalgo, J. C., Peña-Angulo, D., Brunetti, M. & Cortesi, N. Recent trend in temperature evolution in Spanish mainland (1951–2010): from warming to hiatus. Int. J. Climatol. 36, 2405–2416 (2016).

    Article 

    Google Scholar 

  • McCullough, I. M. et al. High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landsc. Ecol. 31, 1063–1075 (2016).

    Article 

    Google Scholar 

  • Sanz-Elorza, M., Dana, E. D., González, A. & Sobrino, E. Changes in the high-mountain vegetation of the central Iberian Peninsula as a probable sign of global warming. Ann. Bot. 92, 273–280 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peñuelas, J. & Boada, M. A global change induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol. 9, 131–140 (2003).

    ADS 
    Article 

    Google Scholar 

  • Linares, J. C. & Tíscar, P. A. Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol. 30, 795–806 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Giorgi, F., Hurrell, J. W., Marinucci, M. R. & Beniston, M. Elevation dependency of the surface climate change signal: a model study. J. Clim. 10, 288–296 (1997).

    ADS 
    Article 

    Google Scholar 

  • Palazzi, E., Mortarini, L., Terzago, S. & Von Hardenberg, J. Elevation-dependent warming in global climate model simulations at high spatial resolution. Clim. Dyn. 52, 2685–2702 (2019).

    Article 

    Google Scholar 

  • Poyatos, R., Latron, J. & Llorens, P. Land use and land cover change after agricultural abandonment. Mt. Res. Dev. 23, 362–368 (2003).

    Article 

    Google Scholar 

  • Mouillot, F., Ratte, J. P., Joffre, R., Mouillot, D. & Rambal, S. Long-term forest dynamic after land abandonment in a fire prone Mediterranean landscape (central Corsica, France). Landsc. Ecol. 20, 101–112 (2005).

    Article 

    Google Scholar 

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ríos-Cornejo, D., Penas, Á., Álvarez-Esteban, R. & Del Río, S. Links between teleconnection patterns and mean temperature in Spain. Theor. Appl. Climatol. 122, 1–18 (2015).

    ADS 
    Article 

    Google Scholar 

  • Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martinez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Chang. 17, 420–428 (2007).

    Article 

    Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., El Kenawy, A. M. & Angulo-Martínez, M. Daily atmospheric circulation events and extreme precipitation risk in northeast Spain: Role of the North Atlantic Oscillation, the Western Mediterranean Oscillation, and the Mediterranean Oscillation. J. Geophys. Res. Atmos. 114, D8 (2009).

    Article 

    Google Scholar 

  • Guzman-Morales, J. & Gershunov, A. Climate change suppresses Santa Ana winds of southern California and sharpens their seasonality. Geophys. Res. Lett. 46, 2772–2780. https://doi.org/10.1029/2018GL080261 (2019).

    ADS 
    Article 

    Google Scholar 

  • Yu, M. & Ruggieri, E. Change point analysis of global temperature records. Int. J. Climatol. 39, 3679–3688 (2019).

    Article 

    Google Scholar 

  • Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, 08707. https://doi.org/10.1029/2006GL025734 (2006).

    ADS 
    Article 

    Google Scholar 

  • García, M. J. L. Recent warming in the Balearic Sea and Spanish Mediterranean coast: Towards an earlier and longer summer. Atmósfera 28, 149–160 (2015).

    Article 

    Google Scholar 

  • Toreti, A., Desiato, F., Fioravanti, G. & Perconti, W. Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Clim. Change 99, 211–227 (2010).

    ADS 
    Article 

    Google Scholar 

  • Scorzini, A. R. & Leopardi, M. Precipitation and temperature trends over central Italy (Abruzzo Region): 1951–2012. Theor. Appl. Climatol. 135, 959–977 (2019).

    ADS 
    Article 

    Google Scholar 

  • Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, 21408. https://doi.org/10.1029/2007.GL03129 (2007).

    ADS 
    Article 

    Google Scholar 

  • Boulant, N., Kunstler, G., Rambal, S. & Lepart, J. Seed supply, drought, and grazing determine spatio-temporal patterns of recruitment for native and introduced invasive pines in grasslands. Divers. Distrib. 14, 862–874 (2008).

    Article 

    Google Scholar 

  • Améztegui, A. Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob. Ecol. Biogeogr. 19, 632–641 (2010).

    Google Scholar 

  • Rambal, S. Relations entre couverts végétaux des parcours et cycle de l’eau. In L’eau des troupeaux en alpages et sur parcours: une ressource à gérer, aménager, partager (ed. Lepart, J.) 25–37 (Association Française de Pastoralisme et Cardère éditeur, 2015).

    Google Scholar 

  • Fonderflick, J., Lepart, J., Caplat, P., Debussche, M. & Marty, P. Managing agricultural change for biodiversity conservation in a Mediterranean upland. Biol. Conserv. 143, 737–746 (2010).

    Article 

    Google Scholar 

  • Abadie, J. et al. Forest recovery since 1860 in a Mediterranean region: Drivers and implications for land use and land cover spatial distribution. Landsc. Ecol. 33, 289–305 (2018).

    Article 

    Google Scholar 

  • Cervera, T., Pino, J., Marull, J., Padró, R. & Tello, E. Understanding the long-term dynamics of forest transition: From deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005). Land Use Policy 80, 318–331 (2019).

    Article 

    Google Scholar 

  • Wolpert, F., Quintas-Soriano, C. & Plieninger, T. Exploring land-use histories of tree-crop landscapes: a cross-site comparison in the Mediterranean Basin. Sustain. Sci. 15, 1267–1283 (2020).

    Article 

    Google Scholar 

  • Lasanta-Martínez, T., Vicente-Serrano, S. M. & Cuadrat-Prats, J. M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 25, 47–65 (2005).

    Article 

    Google Scholar 

  • Malandra, F., Vitali, A., Urbinati, C., Weisberg, P. J. & Garbarino, M. Patterns and drivers of forest landscape change in the Apennines range, Italy. Reg. Environ. Change 19, 1973–1985 (2019).

    Article 

    Google Scholar 

  • Zhang, Q. et al. Reforestation and surface cooling in temperate zones: Mechanisms and implications. Glob. Change Biol. 26, 3384–3401 (2020).

    ADS 
    Article 

    Google Scholar 

  • Rambal, S., Lacaze, B. & Winkel, T. Testing an area-weighted model for albedo or surface temperature of mixed pixels in Mediterranean woodlands. Int. J. Remote Sens. 11, 1495–1499 (1990).

    Article 

    Google Scholar 

  • Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393. https://doi.org/10.1038/nclimate2196 (2014).

    ADS 
    Article 

    Google Scholar 

  • Novick, K. A. & Katul, G. G. The duality of reforestation impacts on surface and air temperature. J. Geophys. Res. Biogeosci. 125, e05543 (2020).

    Article 

    Google Scholar 

  • Davy, R. & Esau, I. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nat. Commun. 7, 1–8 (2016).

    Article 

    Google Scholar 

  • Serafin, S. et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 9, 102. https://doi.org/10.3390/atmos9030102 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12, 053002 (2017).

    ADS 
    Article 

    Google Scholar 

  • Visbeck, M. H., Hurrell, J. W., Polvani, L. & Cullen, H. M. The North Atlantic oscillation: Past, present, and future. Proc. Natl. Acad. Sci. 98, 12876–12877 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hurrell, J. W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 269, 676–679 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martín, P., Sabatés, A., Lloret, J. & Martin-Vide, J. Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim. Change 110, 925–939 (2012).

    ADS 
    Article 

    Google Scholar 

  • Schwingshackl, C., Hirschi, M. & Seneviratne, S. I. Global contributions of incoming radiation and land surface conditions to maximum near surface air temperature variability and trend. Geophys. Res. Lett. 45, 5034–5044 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806. https://doi.org/10.1029/2008GL036350 (2009).

    ADS 
    Article 

    Google Scholar 

  • Schwarz, M., Folini, D., Yang, S., Allan, R. P. & Wild, M. Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nat. Geosci. 13, 110–115 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Norris, J. R. & Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming”, and solar “brightening”. J. Geophys. Res. Atmos. 112, D08214. https://doi.org/10.1029/2006JD007794 (2007).

    ADS 
    Article 

    Google Scholar 

  • Mateos, D. et al. Quantifying the respective roles of aerosols and clouds in the strong brightening since the early 2000s over the Iberian Peninsula. J. Geophys. Res. Atmos. 119, 10–382 (2014).

    Article 

    Google Scholar 

  • Sanchez-Lorenzo, A. et al. Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).

    ADS 
    Article 

    Google Scholar 

  • Kambezidis, H. D., Kaskaoutis, D. G., Kalliampakos, G. K., Rashki, A. & Wild, M. The solar dimming/brightening effect over the Mediterranean Basin in the period 1979–2012. J. Atmos. Solar Terr. Phys. 150, 31–46 (2016).

    ADS 
    Article 

    Google Scholar 

  • Chiacchio, M. & Wild, M. Influence of NAO and clouds on long-term seasonal variations of surface solar radiation in Europe. J. Geophys. Res. Atmos. 115, 0022. https://doi.org/10.1029/2009JD012182 (2010).

    Article 

    Google Scholar 

  • Wild, M. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdiscipl. Rev. Clim. Change 7, 91–107 (2016).

    Article 

    Google Scholar 

  • Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).

    Article 

    Google Scholar 

  • Dessler, A. E. & Sherwood, S. C. A matter of humidity. Science 323, 1020–1021 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ruckstuhl, C., Philipona, R., Morland, J. & Ohmura, A. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res. Atmos. 112(D03302), 2007. https://doi.org/10.1029/2006JD007850 (2007).

    Article 

    Google Scholar 

  • Parras-Berrocal, I. M. et al. The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model. Ocean Sci. 16, 743–765. https://doi.org/10.5194/os-16-743-2020 (2020).

    ADS 
    Article 

    Google Scholar 

  • Reale, M. et al. The regional earth system model RegCM-ES: Evaluation of the Mediterranean climate and marine biogeochemistry. J. Adv. Model. Earth Syst. 12, e001812 (2020).

    Article 

    Google Scholar 

  • Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Kelliher, F. M., Leuning, R. & Schulze, E. D. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95, 153–163 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Linacre, E. T. Simpler empirical expression for actual evapotranspiration rates-a discussion. Agric. Meteorol. 11, 451–452 (1973).

    Article 

    Google Scholar 

  • Jones, P. D., Jónsson, T. & Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).

    Article 

    Google Scholar 

  • Palutikof, J. P. Analysis of Mediterranean climate data: measured and modelled. In Mediterranean Climate: Variability and Trends (ed. Bolle, H. J.) (Springer, 2003).

    Google Scholar 

  • Martin-Vide, J. & Lopez-Bustins, J. A. The western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int. J. Climatol. 26, 1455–1475 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC

    Stop ignoring map uncertainty in biodiversity science and conservation policy