Foster, G. & Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011).
Google Scholar
Cahill, N., Rahmstorf, S. & Parnell, A. C. Change points of global temperature. Environ. Res. Lett. 10, 084002 (2015).
Google Scholar
Yan, X. H. et al. The global warming hiatus: Slowdown or redistribution?. Earth’s Future 4, 472–482 (2016).
Google Scholar
Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 5632 (2015).
Google Scholar
Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, 04705. https://doi.org/10.1029/2011GL050582 (2012).
Google Scholar
Pepin, N. C. & Lundquist, J. D. Temperature trends at high elevations: patterns across the globe. Geophys. Res. Lett. 35, 14 (2008).
Google Scholar
Rangwala, I. & Miller, J. R. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim. Change 114, 527–547 (2012).
Google Scholar
Wang, Q., Fan, X. & Wang, M. Recent warming amplification over high elevation regions across the globe. Clim. Dyn. 43, 87–101 (2014).
Google Scholar
Fan, X., Wang, Q., Wang, M. & Jiménez, C. V. Warming amplification of minimum and maximum temperatures over high-elevation regions across the globe. PLoS ONE 10, e0140213 (2015).
Google Scholar
Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424 (2015).
Google Scholar
Piccarreta, M., Lazzari, M. & Pasini, A. Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int. J. Climatol. 35, 1964–1975 (2015).
Google Scholar
Gonzalez-Hidalgo, J. C., Peña-Angulo, D., Brunetti, M. & Cortesi, N. Recent trend in temperature evolution in Spanish mainland (1951–2010): from warming to hiatus. Int. J. Climatol. 36, 2405–2416 (2016).
Google Scholar
McCullough, I. M. et al. High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landsc. Ecol. 31, 1063–1075 (2016).
Google Scholar
Sanz-Elorza, M., Dana, E. D., González, A. & Sobrino, E. Changes in the high-mountain vegetation of the central Iberian Peninsula as a probable sign of global warming. Ann. Bot. 92, 273–280 (2003).
Google Scholar
Peñuelas, J. & Boada, M. A global change induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol. 9, 131–140 (2003).
Google Scholar
Linares, J. C. & Tíscar, P. A. Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol. 30, 795–806 (2010).
Google Scholar
Giorgi, F., Hurrell, J. W., Marinucci, M. R. & Beniston, M. Elevation dependency of the surface climate change signal: a model study. J. Clim. 10, 288–296 (1997).
Google Scholar
Palazzi, E., Mortarini, L., Terzago, S. & Von Hardenberg, J. Elevation-dependent warming in global climate model simulations at high spatial resolution. Clim. Dyn. 52, 2685–2702 (2019).
Google Scholar
Poyatos, R., Latron, J. & Llorens, P. Land use and land cover change after agricultural abandonment. Mt. Res. Dev. 23, 362–368 (2003).
Google Scholar
Mouillot, F., Ratte, J. P., Joffre, R., Mouillot, D. & Rambal, S. Long-term forest dynamic after land abandonment in a fire prone Mediterranean landscape (central Corsica, France). Landsc. Ecol. 20, 101–112 (2005).
Google Scholar
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
Google Scholar
Ríos-Cornejo, D., Penas, Á., Álvarez-Esteban, R. & Del Río, S. Links between teleconnection patterns and mean temperature in Spain. Theor. Appl. Climatol. 122, 1–18 (2015).
Google Scholar
Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martinez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Chang. 17, 420–428 (2007).
Google Scholar
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., El Kenawy, A. M. & Angulo-Martínez, M. Daily atmospheric circulation events and extreme precipitation risk in northeast Spain: Role of the North Atlantic Oscillation, the Western Mediterranean Oscillation, and the Mediterranean Oscillation. J. Geophys. Res. Atmos. 114, D8 (2009).
Google Scholar
Guzman-Morales, J. & Gershunov, A. Climate change suppresses Santa Ana winds of southern California and sharpens their seasonality. Geophys. Res. Lett. 46, 2772–2780. https://doi.org/10.1029/2018GL080261 (2019).
Google Scholar
Yu, M. & Ruggieri, E. Change point analysis of global temperature records. Int. J. Climatol. 39, 3679–3688 (2019).
Google Scholar
Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, 08707. https://doi.org/10.1029/2006GL025734 (2006).
Google Scholar
García, M. J. L. Recent warming in the Balearic Sea and Spanish Mediterranean coast: Towards an earlier and longer summer. Atmósfera 28, 149–160 (2015).
Google Scholar
Toreti, A., Desiato, F., Fioravanti, G. & Perconti, W. Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Clim. Change 99, 211–227 (2010).
Google Scholar
Scorzini, A. R. & Leopardi, M. Precipitation and temperature trends over central Italy (Abruzzo Region): 1951–2012. Theor. Appl. Climatol. 135, 959–977 (2019).
Google Scholar
Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).
Google Scholar
Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, 21408. https://doi.org/10.1029/2007.GL03129 (2007).
Google Scholar
Boulant, N., Kunstler, G., Rambal, S. & Lepart, J. Seed supply, drought, and grazing determine spatio-temporal patterns of recruitment for native and introduced invasive pines in grasslands. Divers. Distrib. 14, 862–874 (2008).
Google Scholar
Améztegui, A. Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob. Ecol. Biogeogr. 19, 632–641 (2010).
Rambal, S. Relations entre couverts végétaux des parcours et cycle de l’eau. In L’eau des troupeaux en alpages et sur parcours: une ressource à gérer, aménager, partager (ed. Lepart, J.) 25–37 (Association Française de Pastoralisme et Cardère éditeur, 2015).
Fonderflick, J., Lepart, J., Caplat, P., Debussche, M. & Marty, P. Managing agricultural change for biodiversity conservation in a Mediterranean upland. Biol. Conserv. 143, 737–746 (2010).
Google Scholar
Abadie, J. et al. Forest recovery since 1860 in a Mediterranean region: Drivers and implications for land use and land cover spatial distribution. Landsc. Ecol. 33, 289–305 (2018).
Google Scholar
Cervera, T., Pino, J., Marull, J., Padró, R. & Tello, E. Understanding the long-term dynamics of forest transition: From deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005). Land Use Policy 80, 318–331 (2019).
Google Scholar
Wolpert, F., Quintas-Soriano, C. & Plieninger, T. Exploring land-use histories of tree-crop landscapes: a cross-site comparison in the Mediterranean Basin. Sustain. Sci. 15, 1267–1283 (2020).
Google Scholar
Lasanta-Martínez, T., Vicente-Serrano, S. M. & Cuadrat-Prats, J. M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 25, 47–65 (2005).
Google Scholar
Malandra, F., Vitali, A., Urbinati, C., Weisberg, P. J. & Garbarino, M. Patterns and drivers of forest landscape change in the Apennines range, Italy. Reg. Environ. Change 19, 1973–1985 (2019).
Google Scholar
Zhang, Q. et al. Reforestation and surface cooling in temperate zones: Mechanisms and implications. Glob. Change Biol. 26, 3384–3401 (2020).
Google Scholar
Rambal, S., Lacaze, B. & Winkel, T. Testing an area-weighted model for albedo or surface temperature of mixed pixels in Mediterranean woodlands. Int. J. Remote Sens. 11, 1495–1499 (1990).
Google Scholar
Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393. https://doi.org/10.1038/nclimate2196 (2014).
Google Scholar
Novick, K. A. & Katul, G. G. The duality of reforestation impacts on surface and air temperature. J. Geophys. Res. Biogeosci. 125, e05543 (2020).
Google Scholar
Davy, R. & Esau, I. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nat. Commun. 7, 1–8 (2016).
Google Scholar
Serafin, S. et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 9, 102. https://doi.org/10.3390/atmos9030102 (2018).
Google Scholar
Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12, 053002 (2017).
Google Scholar
Visbeck, M. H., Hurrell, J. W., Polvani, L. & Cullen, H. M. The North Atlantic oscillation: Past, present, and future. Proc. Natl. Acad. Sci. 98, 12876–12877 (2001).
Google Scholar
Hurrell, J. W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 269, 676–679 (1995).
Google Scholar
Martín, P., Sabatés, A., Lloret, J. & Martin-Vide, J. Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim. Change 110, 925–939 (2012).
Google Scholar
Schwingshackl, C., Hirschi, M. & Seneviratne, S. I. Global contributions of incoming radiation and land surface conditions to maximum near surface air temperature variability and trend. Geophys. Res. Lett. 45, 5034–5044 (2018).
Google Scholar
Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806. https://doi.org/10.1029/2008GL036350 (2009).
Google Scholar
Schwarz, M., Folini, D., Yang, S., Allan, R. P. & Wild, M. Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nat. Geosci. 13, 110–115 (2020).
Google Scholar
Norris, J. R. & Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming”, and solar “brightening”. J. Geophys. Res. Atmos. 112, D08214. https://doi.org/10.1029/2006JD007794 (2007).
Google Scholar
Mateos, D. et al. Quantifying the respective roles of aerosols and clouds in the strong brightening since the early 2000s over the Iberian Peninsula. J. Geophys. Res. Atmos. 119, 10–382 (2014).
Google Scholar
Sanchez-Lorenzo, A. et al. Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).
Google Scholar
Kambezidis, H. D., Kaskaoutis, D. G., Kalliampakos, G. K., Rashki, A. & Wild, M. The solar dimming/brightening effect over the Mediterranean Basin in the period 1979–2012. J. Atmos. Solar Terr. Phys. 150, 31–46 (2016).
Google Scholar
Chiacchio, M. & Wild, M. Influence of NAO and clouds on long-term seasonal variations of surface solar radiation in Europe. J. Geophys. Res. Atmos. 115, 0022. https://doi.org/10.1029/2009JD012182 (2010).
Google Scholar
Wild, M. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdiscipl. Rev. Clim. Change 7, 91–107 (2016).
Google Scholar
Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).
Google Scholar
Dessler, A. E. & Sherwood, S. C. A matter of humidity. Science 323, 1020–1021 (2009).
Google Scholar
Ruckstuhl, C., Philipona, R., Morland, J. & Ohmura, A. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res. Atmos. 112(D03302), 2007. https://doi.org/10.1029/2006JD007850 (2007).
Google Scholar
Parras-Berrocal, I. M. et al. The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model. Ocean Sci. 16, 743–765. https://doi.org/10.5194/os-16-743-2020 (2020).
Google Scholar
Reale, M. et al. The regional earth system model RegCM-ES: Evaluation of the Mediterranean climate and marine biogeochemistry. J. Adv. Model. Earth Syst. 12, e001812 (2020).
Google Scholar
Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
Google Scholar
Kelliher, F. M., Leuning, R. & Schulze, E. D. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95, 153–163 (1993).
Google Scholar
Linacre, E. T. Simpler empirical expression for actual evapotranspiration rates-a discussion. Agric. Meteorol. 11, 451–452 (1973).
Google Scholar
Jones, P. D., Jónsson, T. & Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).
Google Scholar
Palutikof, J. P. Analysis of Mediterranean climate data: measured and modelled. In Mediterranean Climate: Variability and Trends (ed. Bolle, H. J.) (Springer, 2003).
Martin-Vide, J. & Lopez-Bustins, J. A. The western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int. J. Climatol. 26, 1455–1475 (2006).
Google Scholar
Source: Ecology - nature.com