in

International food trade benefits biodiversity and food security in low-income countries

  • Sustainable Development Goals (United Nations, 2015); https://sustainabledevelopment.un.org

  • Nilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Lu, Y., Nakicenovic, N., Visbeck, M. & Stevance, A.-S. Policy: five priorities for the UN Sustainable Development Goals. Nature 520, 432–433 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Xu, Z. et al. Impacts of international trade on global sustainable development. Nat. Sustain. https://doi.org/10.1038/s41893-020-0572-z (2020).

  • Xu, Z. et al. Assessing progress towards sustainable development over space and time. Nature 577, 74–78 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. An integrated framework for achieving Sustainable Development Goals around the world. Ecol. Econ. Soc. 1, 11–17 (2018).

    Google Scholar 

  • Zhao, Z. et al. Synergies and tradeoffs among Sustainable Development Goals across boundaries in a metacoupled world. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141749 (2020).

  • Liu, J. in The International Encyclopedia of Geography: People, the Earth, Environment, and Technology (eds Richardson, D. et al.) 1–8 (John Wiley & Sons, 2020).

  • Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Carole, D. & Ignacio, R.-I. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 11, 035012 (2016).

    Google Scholar 

  • Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Delzeit, R., Zabel, F., Meyer, C. & Václavík, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change 17, 1429–1441 (2017).

    Google Scholar 

  • Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Porkka, M., Kummu, M., Siebert, S. & Varis, O. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8, e82714 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, S. A., Smith, M. R., Fanzo, J., Remans, R. & DeFries, R. S. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 1, 34–37 (2018).

    Google Scholar 

  • MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. Bioscience 65, 275–289 (2015).

    Google Scholar 

  • Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).

    Google Scholar 

  • Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).

    Google Scholar 

  • Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1905618116 (2019).

  • Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).

  • World Development Indicators (World Bank, 2020); https://data.worldbank.org

  • Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

    CAS 

    Google Scholar 

  • Hull, V. & Liu, J. Telecoupling: a new frontier for global sustainability. Ecol. Soc. https://doi.org/10.5751/ES-10494-230441 (2018).

  • Kapsar, K. E. et al. Telecoupling research: the first five years. Sustainability 11, 1033 (2019).

    Google Scholar 

  • Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chung, M. G., Kapsar, K., Frank, K. A. & Liu, J. The spatial and temporal dynamics of global meat trade networks. Sci. Rep. 10, 16657 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    ADS 

    Google Scholar 

  • Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).

    Google Scholar 

  • Wimberly, M. C., Narem, D. M., Bauman, P. J., Carlson, B. T. & Ahlering, M. A. Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol. Conserv. 217, 121–130 (2018).

    Google Scholar 

  • Wu, W. et al. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76, 515–525 (2018).

    Google Scholar 

  • Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28, 1715–1732 (2018).

    Google Scholar 

  • Sun, J. et al. Importing food damages domestic environment: evidence from global soybean trade. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1718153115 (2018).

  • Liu, J. et al. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 33, 58–69 (2018).

    Google Scholar 

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed 

    Google Scholar 

  • Post-2020 Global Biodiversity Framework: Discussion Paper Adopted by the Conference of the Parties CBD/POST2020/PREP/1/1 (UNEP, 2019); https://www.cbd.int/doc/c/d0f3/aca0/d42fa469029f5a4d69f4da8e/post2020-prep-01-01-en.pdf

  • Ehrlich, P. R. & Harte, J. Food security requires a new revolution. Int. J. Environ. Stud. 72, 908–920 (2015).

    Google Scholar 

  • Redford, K. H. et al. Mainstreaming biodiversity: conservation for the twenty-first century. Front. Ecol. Evol. 3, 137 (2015).

    Google Scholar 

  • Pe’er, G. et al. EU agricultural reform fails on biodiversity. Science 344, 1090–1092 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Liu, J. Consumption Patterns and Biodiversity (Biodiversity Programme of the Royal Society, 2020); https://royalsociety.org/topics-policy/projects/biodiversity/consumption-patterns-and-biodiversity

  • Liu, J., Daily, G. C., Ehrlich, P. R. & Luck, G. W. Effects of household dynamics on resource consumption and biodiversity. Nature 421, 530–533 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • World Population Prospects (United Nations Department of Economic and Social Affairs Population Division, 2019); https://population.un.org/wpp/Download/Standard/Population/

  • FAOSTAT Statistics Database (UN FAO, 2020); https://www.fao.org/faostat

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.r-project.org

  • Kastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70, 1032–1040 (2011).

    Google Scholar 

  • Liu, J. Forest sustainability in China and implications for a telecoupled world. Asia Pac. Policy Stud. 1, 230–250 (2014).

    Google Scholar 

  • Torres-Reyna, O. Getting Started in Fixed/Random Effects Models Using R (Data & Statistical Services, Princeton Univ., 2010).

  • Chung, M. G., Dietz, T. & Liu, J. Global relationships between biodiversity and nature-based tourism in protected areas. Ecosyst. Serv. 34, 11–23 (2018).

    Google Scholar 

  • O’Brien, R. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Google Scholar 


  • Source: Ecology - nature.com

    Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan