in

Phylogeography of the veined squid, Loligo forbesii, in European waters

  • Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jereb, P. et al. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No vol. 325 (2015).

  • ICES. ICES WGCEPH REPORT 2015 Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH). 8–11 (2019).

  • Quetglas, A. et al. Long-term spatiotemporal dynamics of cephalopod assemblages in the Mediterranean sea. Sci. Mar. 83, 33–42 (2019).

    Article 

    Google Scholar 

  • Martins, H. R. Biological studies of the exploited stock of Loligo forbesi (Mollusca: Cephalopoda) in the Azores. J. Mar. Biol. Assoc. United Kingdom 62, 799–808 (1982).

    Article 

    Google Scholar 

  • Guerra, A. & Rocha, F. The life history of Loligo vulgaris and Loligo forbesi (Cephalopoda: Loliginidae) in Galician waters (NW Spain). Fish. Res. 21, 43–69 (1994).

    Article 

    Google Scholar 

  • Pierce, G. J. & Boyle, P. R. Empirical modelling of interannual trends in abundance of squid (Loligo forbesi) in Scottish waters. Fish. Res. 59, 305–326 (2003).

    Article 

    Google Scholar 

  • Lishchenko, F. et al. A review of recent studies on the life history and ecology of European cephalopods with emphasis on species with the greatest commercial fishery and culture potential. Fish. Res. 236, 105847 (2021).

    Article 

    Google Scholar 

  • Laptikhovsky, V. et al. Identification of benthic egg masses and spawning grounds in commercial squid in the English Channel and Celtic Sea: Loligo vulgaris vs L. forbesii. Fish. Res. 241, 106004 (2021).

    Article 

    Google Scholar 

  • Souza, H. V. et al. Analysis of the mitochondrial COI gene and its informative potential for evolutionary inferences in the families Coreidae and Pentatomidae (Heteroptera). Genet. Mol. Res. 15, 1–14 (2016).

    CAS 

    Google Scholar 

  • Brierley, A. S. et al. Genetic variation in the neritic squid Loligo forbesi (Myopsida: Loliginidae) in the northeast Atlantic Ocean. Mar. Biol. 122, 79–86 (1995).

    Article 

    Google Scholar 

  • Shaw, P. W. et al. Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol. Ecol. 8, 407–417 (1999).

    CAS 
    Article 

    Google Scholar 

  • Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Begg, G. A. & Waldman, J. R. An holistic approach to fish stock identification. Fish. Res. 43, 35–44 (1999).

    Article 

    Google Scholar 

  • Shaw, P. W. Polymorphic microsatellite markers in a cephalopod: The veined squid Loligo forbesi. Mol. Ecol. 6, 297–298 (1997).

    CAS 
    Article 

    Google Scholar 

  • Emery, A. M. et al. New microsatellite markers for assessment of paternity in the squid Loligo forbesi (Mollusca: Cephalopoda). Mol. Ecol. 9, 110–112 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Butler, J. M. Advanced Topics in Forensic DNA Typing: Interpretation (Elsevier Academic Press, 2015).

    Google Scholar 

  • Park, S. D. E. Trypanotolerance in West African Cattle and the Population Genetics Effects of Selection. Trinity Coll. (2001).

  • Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).

    Google Scholar 

  • Hedrick, P. W. Genetics of Populations (Science Books International, 1983).

    Google Scholar 

  • Weir, B. S. & Cockerham, C. C. Estimating F statistics for Population Structure. Evolution 38, 1358–1370 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).

    Article 

    Google Scholar 

  • Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Kalinowski, S. T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).

    CAS 
    Article 

    Google Scholar 

  • Excoffier, L. et al. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinforma. 1, 117693430500100 (2005).

    Article 

    Google Scholar 

  • Pritchard, J. K. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gilbert, K. J. et al. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program structure. Mol. Ecol. 21, 4925–4930 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Porras-Hurtado, L. et al. An overview of STRUCTURE: Applications, parameter settings, and supporting software. Front. Genet. 4, 1–13 (2013).

    CAS 
    Article 

    Google Scholar 

  • Evanno, G. et al. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kopelman, N. M. et al. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Folmer, O. et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS 

    Google Scholar 

  • Anderson, F. E. Phylogeny and historical biogeography of the loliginid squids (Mollusca: Cephalopoda) based on mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 15, 191–214 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gebhardt, K. & Knebelsberger, T. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences. Helgol. Mar. Res. 69, 259–271 (2015).

    ADS 
    Article 

    Google Scholar 

  • Lobo, J. et al. Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol. 13, 1–8 (2013).

    Article 
    CAS 

    Google Scholar 

  • de Luna Sales, J. B. et al. New molecular phylogeny of the squids of the family Loliginidae with emphasis on the genus Doryteuthis Naef ,1912: Mitochondrial and nuclear sequences indicate the presence of cryptic species in the southern Atlantic Ocean. Mol. Phylogenet. Evol. 68, 293–299 (2013).

    Article 

    Google Scholar 

  • Tatulli, G. et al. A rapid colorimetric assay for on-site authentication of cephalopod species. Biosensors 10, 3–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • Velasco, A. et al. A new rapid method for the authentication of common octopus (Octopus vulgaris) in seafood products using recombinase polymerase amplification (rpa) and lateral flow assay (lfa). Foods 10, 1825 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Luz, A. & Keskin, E. Building Reference Library for Marine Fish Species of Azores Archipelago and Bio-monitoring via DNA Metabarcoding. https://www.ncbi.nlm.nih.gov/nuccore/MT491734 (2020).

  • BoldSystems. https://boldsystems.org/index.php/Public_RecordView?processid=AZB030-20 (2018). (Accessed 2 May 2022).

  • Tamura, K. et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rambaut, A. et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bandelt, H.-J. et al. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (2009).

    Article 

    Google Scholar 

  • Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schlitzer, R. Ocean Data View. (2013).

  • Shaw, P. W. & Boyle, P. R. Multiple paternity within the brood of single females of Loligo forbesi (Cephalopoda: Loliginidae), demonstrated with microsatellite DNA markers. Mar. Ecol. Prog. Ser. 160, 279–282 (1997).

    ADS 
    Article 

    Google Scholar 

  • Emery, A. M. et al. Assignment of paternity groups without access to parental genotypes: Multiple mating and developmental plasticity in squid. Mol. Ecol. 10, 1265–1278 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Catarino, D. et al. The role of the Strait of Gibraltar in shaping the genetic structure of the Mediterranean Grenadier, Coryphaenoides mediterraneus, between the Atlantic and Mediterranean Sea. PLoS ONE 12, 1–24 (2017).

    Google Scholar 

  • Gonzalez, E. G. & Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 7, 1–12 (2007).

    Article 
    CAS 

    Google Scholar 

  • Reichow, D. & Smith, M. J. Microsatellites reveal high levels of gene flow among populations of the California squid Loligo opalescens. Mol. Ecol. 10, 1101–1109 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shaw, P. W. et al. DNA markers indicate that distinct spawning cohorts and aggregations of Patagonian squid, Loligo gahi, do not represent genetically discrete subpopulations. Mar. Biol. 144, 961–970 (2004).

    CAS 
    Article 

    Google Scholar 

  • Göpel, A. Populationsgenetik und Phylogeographie des Nordischen Kalmars Loligo forbesii Steenstrup, 1856 in Europäischen Gewässern. Masterthesis, Univ. Rostock in German, 76pp (2020).

  • Oesterwind, D. et al. Biology and meso-scale distribution patterns of North Sea cephalopods. Fish. Res. 106, 141–150 (2010).

    Article 

    Google Scholar 

  • Sauer, W. H. H. et al. Tag recapture studies of the chokka squid Loligo vulgaris reynaudii d’Orbigny, 1845 on inshore spawning grounds on the south-east coast of South Africa. Fish. Res. 45, 283–289 (2000).

    ADS 
    Article 

    Google Scholar 

  • Knowlton, N. & Weigt, L. A. New dates and new rates for divergence across the Isthmus of Panama. Proc. R. Soc. B Biol. Sci. 265, 2257–2263 (1998).

    Article 

    Google Scholar 

  • Pérez-Losada, M. et al. Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol. Ecol. 16, 2667–2679 (2007).

    PubMed 
    Article 

    Google Scholar 

  • O’Dor, R. K. Can understanding squid life-history strategies and recruitment improve management?. South African J. Mar. Sci. 7615, 193–206 (1998).

    Article 

    Google Scholar 

  • Izquierdo, A. et al. Modelling in the Strait of Gibraltar: From operational oceanography to scale interactions. Fundam. i Prikl. Gidrofiz. 9, 15–24 (2016).

    Google Scholar 

  • Clarke, M. & Hart, M. Treatise Online no. 102: Part M, Chapter 11: Statoliths and coleoid evolution. Treatise Online (2018).

  • Hsü, K. J. et al. Late Miocene desiccation of the mediterranean. Nature 242, 240–244 (1973).

    ADS 
    Article 

    Google Scholar 

  • Garcia-Castellanos, D. et al. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778–781 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thunell, R. C. et al. Atlantic-mediterranean water exchange during the late neocene. Paleoceanography 2(6), 661 (1987).

    ADS 
    Article 

    Google Scholar 

  • Green, C. P. et al. Combining statolith element composition and fourier shape data allows discrimination of spatial and temporal stock structure of arrow squid (Nototodarus gouldi). Can. J. Fish. Aquat. Sci. 72, 1609–1618 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan